Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Although macromolecular purity is thought to be essential for the growth of flawless protein crystals, only a few studies have investigated how contaminants alter the crystallization process and crystal quality. Likewise, the outcome of a crystallization process may vary with the crystallization method. Here, it is reported how these two variables affect the crystallogenesis of aspartyl-tRNA synthetase from the eubacterium Thermus thermophilus. This homodimeric enzyme (Mr = 130 000) possesses a multi-domain architecture and crystallizes either in a monoclinic or an orthorhombic habit. Minute amounts of protein impurities alter to a different extent the growth of each crystal form. The best synthetase crystals are only obtained when the crystallizing solution is either enclosed in capillaries or immobilized in agarose gel. In these two environments convection is reduced with regard to that existing in an unconstrained solution.

Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds