Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
We show with three proteins that trapping and release of the water molecules upon crystallization is a determinant of the crystallization thermodynamics. With HbC, a strong retrograde solubility dependence on temperature yields a high positive enthalpy of 155 kJ mol-1, i.e., crystallization is only possible because of the huge entropy gain of 610 J mol-1K-1, stemming from the release of up to 10 water molecules per protein intermolecular contact. With apoferritin, the enthalpy of crystallization is close to zero. The main component in the crystallization driving force is the entropy gain due to the release upon crystallization of two water molecules bound to one protein molecules in solution. With both proteins, the density of the growth sites imaged by AFM is in excellent agreement with a calculation using the crystallization free energy. With lysozyme, the entropy effect due to the restructuring of the water molecules is negative. This leads to higher solubility.

Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds