Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Aspartyl-tRNA synthetases were the model proteins in pilot crystallogenesis experiments. They are homodimeric enzymes of Mr~125 kDa that possess as substrates a transfer RNA, ATP and aspartate. They have been isolated from different sources and were crystallized either as free proteins or in association with their ligands. This review discusses their crystallisability with emphasis to crystal quality and structure determination. Crystallization in low diffusivity gelled media or in microgravity environments is highlighted. It has contributed to prepare high-resolution diffracting crystals with better internal order as reflected by their mosaicity. With AspRS from Thermus thermophilus, the better crystalline quality of the space-grown crystals within APCF is correlated with higher quality of the derived electron density maps. Usefulness for structural biology of targeted methods aimed to improve the intrinsic physical quality of protein crystals is highlighted.

Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds