metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido(6-methyl-2,2′-bi­pyridine-κ2N,N′)cobalt(II)

aDepartment of Chemistry, Omidieh Branch, Islamic Azad University, Omidieh, Iran, and bDepartment of Petroleum Engineering, Omidieh Branch, Islamic Azad University, Omidieh, Iran
*Correspondence e-mail: sadifchemist@hotmail.com

(Received 26 October 2012; accepted 1 November 2012; online 7 November 2012)

In the mol­ecule of the title compound, [CoBr2(C11H10N2)], the CoII atom is four-coordinated in a distorted tetra­hedral geometry by two N atoms from a chelating 6-methyl-2,2′-bipyridine ligand and two terminal Br atoms. In the crystal, ππ stacking inter­actions between the pyridine rings along the a-axis direction [centroid–centroid distance = 3.761 (7) Å] and C—H⋯Br hydrogen bonds in the bc plane together generate the three-dimensional packing.

Related literature

For related structures, see: Ahmadi et al. (2008a[Ahmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008a). Acta Cryst. E64, m1407.],b[Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008b). Acta Cryst. E64, m1306-m1307.], 2009[Ahmadi, R., Kalateh, K., Alizadeh, R., Khoshtarkib, Z. & Amani, V. (2009). Acta Cryst. E65, m1169-m1170.]); Amani et al. (2009[Amani, V., Safari, N., Khavasi, H. R. & Akkurt, M. (2009). Polyhedron, 28, 3026-3030.]); Kalateh et al. (2010[Kalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m1241.]); Newkome et al. (1982[Newkome, G. R., Fronczek, F. R., Gupta, V. K., Puckett, W. E., Pantaleo, D. C. & Kiefer, G. E. (1982). J. Am. Chem. Soc. 104, 1782-1783.]); Onggo et al. (2005[Onggo, D., Scudder, M. L., Craig, D. C. & Goodwin, H. A. (2005). J. Mol. Struct. 738, 129-136.]); Shirvan et al. (2012[Shirvan, S. A., Haydari Dezfuli, S., Golabi, E. & Gholamzadeh, M. A. (2012). Acta Cryst. E68, m1327-m1328.]); Shirvan & Haydari Dezfuli (2012[Shirvan, S. A. & Haydari Dezfuli, S. (2012). Acta Cryst. E68, m1124.]).

[Scheme 1]

Experimental

Crystal data
  • [CoBr2(C11H10N2)]

  • Mr = 388.94

  • Monoclinic, P 21 /n

  • a = 7.5541 (7) Å

  • b = 9.7249 (7) Å

  • c = 17.7352 (16) Å

  • β = 97.392 (7)°

  • V = 1292.05 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.49 mm−1

  • T = 173 K

  • 0.45 × 0.13 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.379, Tmax = 0.512

  • 6393 measured reflections

  • 2519 independent reflections

  • 1546 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.085

  • wR(F2) = 0.164

  • S = 1.05

  • 2519 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 2.16 e Å−3

  • Δρmin = −1.13 e Å−3

Table 1
Selected bond lengths (Å)

Co1—Br1 2.352 (2)
Co1—Br2 2.3698 (19)
Co1—N1 2.035 (10)
Co1—N2 2.029 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Br1i 0.96 2.89 3.849 (14) 178
C8—H8⋯Br2ii 0.93 2.89 3.771 (14) 158
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we reported the synthesis and crystal structure of [In(6-mbipy)Cl3(DMSO)], (II) (Shirvan et al., 2012) and [Cd(6-mbipy)Br2(DMSO)], (III) (Shirvan & Haydari Dezfuli, 2012) (6-mbipy = 6-methyl-2,2'-bipyridine, DMSO = dimethyl sulfoxide). 6-Methyl-2,2'-bipyridine is a good ligand and a few complexes with 6-mbipy have been prepared, such as that of [Hg(6-mbipy)Cl2], (IV) (Ahmadi et al., 2008a), [Pt(6-mbipy)Cl4], (V) (Amani et al., 2009), [Pb4(NO3)8(6-mbipy)4], (VI) (Ahmadi et al., 2009), [Zn(6-mbipy)Br2], (VII) (Kalateh et al., 2010), [Zn(6-mbipy)Cl2], (VIII) (Ahmadi et al., 2008b), [Pd(6-mbipy)Cl2], (IX) (Newkome et al., 1982) and [Ru(6-mbipy)3][BF4]2, (X) (Onggo et al., 2005). We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound (Fig. 1), the CoII atom is four-coordinated in a distorted tetrahedral geometry by two N atoms from a chelating 6-mbipy ligand and two terminal Br atoms (Table 1). In the crystal, intermolecular C—H···Br hydrogen bonds and ππ contacts (Table 2, Fig. 2) between the pyridine rings, Cg2···Cg3i [symmetry code: (i) 1-x, 1-y, -z, Cg2 and Cg3 are the centroids of the rings N1/C2–C6 and N2/C7–C11, respectively], with a centroid–centroid distance of 3.761 (7) Å, stabilize the structure.

Related literature top

For related structures, see: Ahmadi et al. (2008a,b, 2009); Amani et al. (2009); Kalateh et al. (2010); Newkome et al. (1982); Onggo et al. (2005); Shirvan et al. (2012); Shirvan & Haydari Dezfuli (2012).

Experimental top

For the preparation of the title compound, a solution of 6-mbipy (0.28 g, 0.26 ml, 1.65 mmol) in acetonitrile (10 ml) was added to a solution of CoBr2 (0.36 g, 1.65 mmol) in acetonitrile (10 ml) and the resulting blue solution was stirred for 20 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, blue needle crystals of the title compound were isolated (yield: 0.47 g, 73.2%).

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 0.96 Å from Br1 the deepest hole 0.79 Å from Br1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing diagram for the title compound. Hydrogen bonds are shown as dashed lines.
Dibromido(6-methyl-2,2'-bipyridine-κ2N,N')cobalt(II) top
Crystal data top
[CoBr2(C11H10N2)]F(000) = 748
Mr = 388.94Dx = 2.000 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6393 reflections
a = 7.5541 (7) Åθ = 3.1–26.0°
b = 9.7249 (7) ŵ = 7.49 mm1
c = 17.7352 (16) ÅT = 173 K
β = 97.392 (7)°Needle, blue
V = 1292.05 (19) Å30.45 × 0.13 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2519 independent reflections
Radiation source: fine-focus sealed tube1546 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
ϕ and ω scansθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 79
Tmin = 0.379, Tmax = 0.512k = 1011
6393 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.085Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0569P)2 + 5.329P]
where P = (Fo2 + 2Fc2)/3
2519 reflections(Δ/σ)max = 0.002
145 parametersΔρmax = 2.16 e Å3
0 restraintsΔρmin = 1.13 e Å3
Crystal data top
[CoBr2(C11H10N2)]V = 1292.05 (19) Å3
Mr = 388.94Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5541 (7) ŵ = 7.49 mm1
b = 9.7249 (7) ÅT = 173 K
c = 17.7352 (16) Å0.45 × 0.13 × 0.10 mm
β = 97.392 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
2519 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1546 reflections with I > 2σ(I)
Tmin = 0.379, Tmax = 0.512Rint = 0.099
6393 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0850 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.05Δρmax = 2.16 e Å3
2519 reflectionsΔρmin = 1.13 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.1467 (17)0.3377 (14)0.1282 (7)0.046 (3)
H30.11260.28320.16690.056*
C40.1737 (16)0.2801 (14)0.0583 (7)0.046 (3)
H40.15880.18610.05010.055*
Br10.04264 (18)0.91295 (15)0.11995 (7)0.0501 (4)
N20.2940 (12)0.7342 (12)0.0213 (5)0.042 (3)
C60.2426 (15)0.5016 (13)0.0149 (6)0.034 (3)
C70.2897 (14)0.6000 (13)0.0435 (6)0.034 (3)
C80.3225 (16)0.5617 (15)0.1157 (6)0.045 (3)
H80.31900.46980.13030.054*
C90.3607 (16)0.6643 (16)0.1658 (6)0.045 (4)
H90.38650.64170.21420.055*
C100.3601 (18)0.7992 (16)0.1431 (6)0.049 (4)
H100.37980.86920.17680.059*
N10.2173 (12)0.5578 (10)0.0835 (5)0.031 (2)
C110.3303 (17)0.8297 (15)0.0711 (6)0.043 (3)
H110.33560.92120.05580.052*
Br20.54925 (17)0.79979 (15)0.16326 (7)0.0467 (4)
Co10.2680 (2)0.76329 (17)0.09004 (8)0.0345 (4)
C50.2222 (17)0.3629 (13)0.0021 (6)0.040 (3)
H50.24140.32550.04440.047*
C20.1726 (16)0.4806 (14)0.1384 (7)0.041 (3)
C10.144 (2)0.5546 (17)0.2094 (7)0.070 (5)
H1A0.22130.51710.25160.084*
H1B0.02180.54390.21830.084*
H1C0.16970.65050.20420.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.033 (7)0.049 (9)0.057 (7)0.002 (7)0.002 (6)0.001 (6)
C40.036 (7)0.036 (8)0.061 (8)0.007 (6)0.010 (6)0.022 (6)
Br10.0389 (8)0.0543 (10)0.0579 (8)0.0073 (7)0.0089 (6)0.0186 (6)
N20.023 (5)0.072 (8)0.029 (5)0.002 (5)0.002 (4)0.013 (5)
C60.020 (6)0.042 (7)0.038 (6)0.008 (6)0.002 (4)0.013 (5)
C70.020 (6)0.047 (8)0.033 (6)0.007 (6)0.002 (4)0.009 (5)
C80.034 (7)0.062 (9)0.037 (6)0.010 (7)0.002 (5)0.026 (6)
C90.025 (6)0.077 (11)0.035 (6)0.010 (7)0.005 (5)0.005 (6)
C100.053 (9)0.060 (10)0.035 (6)0.019 (8)0.005 (6)0.003 (6)
N10.021 (5)0.034 (6)0.039 (5)0.002 (4)0.010 (4)0.007 (4)
C110.046 (8)0.047 (9)0.038 (6)0.012 (7)0.011 (5)0.001 (6)
Br20.0342 (7)0.0557 (9)0.0488 (7)0.0003 (7)0.0004 (5)0.0266 (6)
Co10.0306 (9)0.0390 (11)0.0347 (8)0.0018 (8)0.0070 (6)0.0138 (7)
C50.042 (8)0.034 (7)0.042 (6)0.001 (6)0.002 (5)0.006 (6)
C20.026 (7)0.046 (8)0.049 (7)0.005 (6)0.001 (5)0.005 (6)
C10.095 (13)0.077 (12)0.040 (7)0.029 (10)0.014 (7)0.001 (7)
Geometric parameters (Å, º) top
Co1—Br12.352 (2)C7—C81.386 (14)
Co1—Br22.3698 (19)C8—C91.391 (19)
Co1—N12.035 (10)C8—H80.9300
Co1—N22.029 (8)C9—C101.372 (19)
C3—C41.399 (17)C9—H90.9300
C3—C21.411 (18)C10—C111.357 (16)
C3—H30.9300C10—H100.9300
C4—C51.366 (18)N1—C21.309 (15)
C4—H40.9300C11—H110.9300
N2—C111.334 (16)C5—H50.9300
N2—C71.362 (16)C2—C11.491 (18)
C6—N11.369 (13)C1—H1A0.9600
C6—C51.373 (17)C1—H1B0.9600
C6—C71.487 (17)C1—H1C0.9600
C4—C3—C2118.3 (13)C2—N1—C6120.7 (11)
C4—C3—H3120.8C2—N1—Co1125.8 (8)
C2—C3—H3120.8C6—N1—Co1113.3 (8)
C5—C4—C3119.5 (13)N2—C11—C10123.0 (13)
C5—C4—H4120.2N2—C11—H11118.5
C3—C4—H4120.2C10—C11—H11118.5
C11—N2—C7118.3 (10)N2—Co1—N181.3 (4)
C11—N2—Co1127.0 (9)N2—Co1—Br1118.0 (3)
C7—N2—Co1114.4 (8)N1—Co1—Br1119.0 (3)
N1—C6—C5120.9 (11)N2—Co1—Br2111.2 (3)
N1—C6—C7115.8 (10)N1—Co1—Br2109.1 (3)
C5—C6—C7123.3 (10)Br1—Co1—Br2114.06 (7)
N2—C7—C8121.6 (12)C4—C5—C6119.6 (11)
N2—C7—C6114.5 (9)C4—C5—H5120.2
C8—C7—C6123.9 (12)C6—C5—H5120.2
C7—C8—C9118.3 (13)N1—C2—C3120.9 (11)
C7—C8—H8120.9N1—C2—C1115.6 (12)
C9—C8—H8120.9C3—C2—C1123.4 (12)
C10—C9—C8119.3 (11)C2—C1—H1A109.5
C10—C9—H9120.3C2—C1—H1B109.5
C8—C9—H9120.3H1A—C1—H1B109.5
C11—C10—C9119.5 (13)C2—C1—H1C109.5
C11—C10—H10120.3H1A—C1—H1C109.5
C9—C10—H10120.3H1B—C1—H1C109.5
C2—C3—C4—C50.6 (18)C7—N2—Co1—N17.8 (8)
C11—N2—C7—C80.2 (16)C11—N2—Co1—Br160.6 (11)
Co1—N2—C7—C8173.8 (8)C7—N2—Co1—Br1126.1 (7)
C11—N2—C7—C6178.2 (10)C11—N2—Co1—Br274.0 (10)
Co1—N2—C7—C67.8 (12)C7—N2—Co1—Br299.4 (7)
N1—C6—C7—N22.6 (14)C2—N1—Co1—N2176.7 (10)
C5—C6—C7—N2176.5 (11)C6—N1—Co1—N26.3 (7)
N1—C6—C7—C8179.1 (10)C2—N1—Co1—Br159.5 (10)
C5—C6—C7—C81.8 (18)C6—N1—Co1—Br1123.5 (7)
N2—C7—C8—C90.1 (17)C2—N1—Co1—Br273.7 (9)
C6—C7—C8—C9178.3 (11)C6—N1—Co1—Br2103.3 (7)
C7—C8—C9—C101.7 (18)C3—C4—C5—C60.5 (18)
C8—C9—C10—C113.1 (19)N1—C6—C5—C40.9 (18)
C5—C6—N1—C20.2 (16)C7—C6—C5—C4178.1 (10)
C7—C6—N1—C2178.9 (10)C6—N1—C2—C30.9 (17)
C5—C6—N1—Co1177.0 (9)Co1—N1—C2—C3177.7 (9)
C7—C6—N1—Co13.9 (11)C6—N1—C2—C1178.3 (11)
C7—N2—C11—C101.2 (18)Co1—N1—C2—C14.9 (15)
Co1—N2—C11—C10174.3 (10)C4—C3—C2—N11.3 (18)
C9—C10—C11—N23 (2)C4—C3—C2—C1178.5 (13)
C11—N2—Co1—N1178.8 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Br1i0.962.893.849 (14)178
C8—H8···Br2ii0.932.893.771 (14)158
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[CoBr2(C11H10N2)]
Mr388.94
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)7.5541 (7), 9.7249 (7), 17.7352 (16)
β (°) 97.392 (7)
V3)1292.05 (19)
Z4
Radiation typeMo Kα
µ (mm1)7.49
Crystal size (mm)0.45 × 0.13 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.379, 0.512
No. of measured, independent and
observed [I > 2σ(I)] reflections
6393, 2519, 1546
Rint0.099
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.164, 1.05
No. of reflections2519
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.16, 1.13

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Selected bond lengths (Å) top
Co1—Br12.352 (2)Co1—N12.035 (10)
Co1—Br22.3698 (19)Co1—N22.029 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Br1i0.962.893.849 (14)178
C8—H8···Br2ii0.932.893.771 (14)158
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+1, z.
 

Acknowledgements

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

References

First citationAhmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008a). Acta Cryst. E64, m1407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008b). Acta Cryst. E64, m1306–m1307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmadi, R., Kalateh, K., Alizadeh, R., Khoshtarkib, Z. & Amani, V. (2009). Acta Cryst. E65, m1169–m1170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmani, V., Safari, N., Khavasi, H. R. & Akkurt, M. (2009). Polyhedron, 28, 3026–3030.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m1241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNewkome, G. R., Fronczek, F. R., Gupta, V. K., Puckett, W. E., Pantaleo, D. C. & Kiefer, G. E. (1982). J. Am. Chem. Soc. 104, 1782–1783.  CSD CrossRef CAS Web of Science Google Scholar
First citationOnggo, D., Scudder, M. L., Craig, D. C. & Goodwin, H. A. (2005). J. Mol. Struct. 738, 129–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirvan, S. A. & Haydari Dezfuli, S. (2012). Acta Cryst. E68, m1124.  CSD CrossRef IUCr Journals Google Scholar
First citationShirvan, S. A., Haydari Dezfuli, S., Golabi, E. & Gholamzadeh, M. A. (2012). Acta Cryst. E68, m1327–m1328.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds