metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1472-m1473

[Aqua­bis­­(nitrato-κO)copper(II)]-μ-{bis­­[5-methyl-3-(pyridin-2-yl)-1H-pyrazol-4-yl]selenide}-[di­aqua­(nitrato-κO)copper(II)] nitrate monohydrate

aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kyiv, Ukraine, bInstitut de Ciencia Molecular (ICMol), Departament de Quimica Inorganica, Universitat de Valencia, C/ Catedratico Jose Beltran Martinez, 2, 46980 Paterna (Valencia), Spain, and cFaculty of Chemistry, University of Wroclaw, 14, F. Joliot–Curie Street, 50383 Wroclaw, Poland
*Correspondence e-mail: pavlenko_vadim@univ.kiev.ua

(Received 5 October 2012; accepted 1 November 2012; online 14 November 2012)

In the title binuclear complex, [Cu2(NO3)3(C18H16N6Se)(H2O)3]NO3·H2O, the CuII ions are penta­coordinated in a tetra­gonal–pyramidal geometry. In both cases, the equatorial planes are formed by a chelating pyrazole-pyridine group, a water mol­ecule and a nitrate O atom, whereas the apical positions are occupied by a water mol­ecule for one CuII ion and a nitrate O atom for the other. The organic selenide ligand adopts a trans configuration with respect to the C–Se–C plane. Numerous inter­molecular O—H⋯O and N—H⋯O hydrogen bonds between the coordinating and lattice water mol­ecules, nitrate anions and pyrazole groups are observed. ππ stacking inter­actions between the pyridine rings [averaged centroid–centroid distance = 3.652 (5) Å] are also present. The lattice water molecule is equally disordered over two sets of sites.

Related literature

For details and applications of related pyrazole compounds, see: Fritsky et al. (2003[Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Inorg. Chim. Acta, 346, 111-118.]); Kovbasyuk et al. (2004[Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880-881.]); Krämer et al. (2002[Krämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307-1314.]); Krämer & Fritsky (2000[Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.]); Penkova et al. (2009[Penkova, L. V., Maciąg, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960-6971.]); Sachse et al. (2008[Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800-806.]). For structural studies of related pyrazolylselenides, see: Seredyuk et al. (2010a[Seredyuk, M., Fritsky, I. O., Krämer, R., Kozlowski, H., Haukka, M. & Gütlich, P. (2010a). Tetrahedron, 66, 8772-8777.], 2011[Seredyuk, M., Znovjyak, K. O., Sliva, T. Y., Haukka, M. & Fritsky, I. O. (2011). Acta Cryst. E67, o3083.], 2012[Seredyuk, M., Pavlenko, V. A., Znovjyak, K. O., Gumienna-Kontecka, E. & Penkova, L. (2012). Acta Cryst. E68, o2068.]). For structural studies of d-metal complexes with bis­(3,5-dimethyl-1H-pyrazol-4-yl)selenide, see: Seredyuk et al. (2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.], 2009[Seredyuk, M., Haukka, M., Pavlenko, V. A. & Fritsky, I. O. (2009). Acta Cryst. E65, m1396.], 2010b[Seredyuk, M., Moroz, Y. S., Znovjyak, K. O., Pavlenko, V. A. & Fritsky, I. O. (2010b). Acta Cryst. E66, m363.],c[Seredyuk, M., Znovjyak, K. O., Moroz, Y. S., Pavlenko, V. A. & Fritsky, I. O. (2010c). Acta Cryst. E66, m527.]). For related structures, see: Fritsky et al. (2004[Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746-3752.]); Kanderal et al. (2005[Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428-1437.]); Moroz et al. (2010[Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750-4752.], 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]). For the treatment of disordered water mol­ecules, see: Nardelli (1999[Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(NO3)3(C18H16N6Se)(H2O)3]NO3·H2O

  • Mr = 842.51

  • Triclinic, [P \overline 1]

  • a = 10.102 (2) Å

  • b = 11.629 (2) Å

  • c = 12.796 (3) Å

  • α = 98.56 (3)°

  • β = 93.07 (3)°

  • γ = 93.04 (3)°

  • V = 1481.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.76 mm−1

  • T = 100 K

  • 0.27 × 0.23 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.476, Tmax = 0.716

  • 11167 measured reflections

  • 6511 independent reflections

  • 5817 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.223

  • S = 1.02

  • 6511 reflections

  • 418 parameters

  • 39 restraints

  • H-atom parameters constrained

  • Δρmax = 2.05 e Å−3

  • Δρmin = −1.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O4 0.85 1.86 2.710 (12) 176
O1—H2O1⋯O15i 1.00 1.77 2.763 (9) 174
O8—H1O8⋯O14 0.85 2.02 2.744 (9) 142
O8—H2O8⋯O2ii 0.94 1.88 2.772 (9) 156
O9—H1O9⋯O13 0.85 1.88 2.732 (9) 173
O9—H2O9⋯O9iii 0.85 1.94 2.794 (9) 175
O9—H3O9⋯O1WAiii 0.85 2.40 3.024 (18) 131
O9—H3O9⋯O1WBiii 0.85 1.91 2.723 (16) 159
N2—H1N2⋯O14iv 0.80 2.08 2.822 (10) 155
N5—H1N⋯O1WA 0.86 2.04 2.878 (18) 166
O1WA—H1WA⋯O5ii 0.89 2.44 3.320 (17) 169
O1WA—H2WA⋯O1WAv 0.91 2.02 2.92 (3) 169
O1WB—H2WB⋯O7ii 0.88 1.56 2.441 (19) 175
Symmetry codes: (i) x+1, y, z-1; (ii) x, y, z+1; (iii) -x, -y, -z+1; (iv) x, y, z-1; (v) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazole-derived ligands are widely used in molecular magnetism, bioinorganic modelling and supramolecular chemistry due to their bridging nature and possibility for easy functionalization (Fritsky et al., 2003; Kovbasyuk et al., 2004; Krämer & Fritsky, 2000; Krämer et al., 2002; Penkova et al., 2009; Sachse et al., 2008). As a part of our synthetic and structural study of pyrazolylselenides (Seredyuk et al., 2010a, 2011, 2012) and their complexes with d-metals (Seredyuk et al., 2007, 2009, 2010b, c), we report here the crystal structure of the title compound.

The title compound is a binuclear complex (Fig. 1) formed by bis[3-methyl-5-(pyridin-2-yl)-1H-pyrazol-4-yl]selenide (Seredyuk et al., 2010a). Each CuII ion is surrounded by three O atoms and two N atoms in a coordination geometry best described as tetragonal pyramidal. For both CuII ions, the equatorial planes are formed by a chelating pyrazole-pyridine group [Cu—N = 1.961 (7)–2.015 (7) Å], a water molecule [Cu1—O8 = 1.966 (6), Cu2—O1 = 1.978 (6) Å] and a nitrate O atom [Cu1—O10 = 1.988 (6), Cu2—O5 = 1.979 (7) Å], whereas the apical positions are occupied by a water molecule for Cu1 [Cu1—O9 = 2.254 (7) Å] and by a nitrate O atom for Cu2 [Cu2—O2 = 2.345 (7) Å]. The organic selenide adopts a trans configuration with a C–Se–C angle equal to 97.9 (4)°. The C—N and C—C bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Fritsky et al., 2004; Kanderal et al., 2005; Moroz et al., 2010, 2012).

An uncoordinated nitrate anion balancing the charge of the complex molecule serves as a bridge to connect three complex molecules through O—H···O and N—H···O hydrogen bonds (Table 1). Also, numerous intermolecular hydrogen bonds are observed between the water molecules and nitrate anions. ππ stacking interactions between the pyridine rings [averaged centroid–centroid distance = 3.652 (5) Å] are also present (Fig. 2).

Related literature top

For details and applications of related pyrazole compounds, see: Fritsky et al. (2003); Kovbasyuk et al. (2004); Krämer et al. (2002); Krämer & Fritsky (2000); Penkova et al. (2009); Sachse et al. (2008). For structural studies of related pyrazolylselenides, see: Seredyuk et al. (2010a, 2011, 2012). For structural studies of d-metal complexes with bis(3,5-dimethyl-1H-pyrazol-4-yl)selenide, see: Seredyuk et al. (2007, 2009, 2010b,c). For related structures, see: Fritsky et al. (2004); Kanderal et al. (2005); Moroz et al. (2010, 2012). For the treatment of disordered water molecules, see: Nardelli (1999).

Experimental top

In a solution of Cu(NO3)2.6H2O (0.144 g, 0.468 mmol) in 5 ml of water a batch of bis[3-methyl-5-(pyridin-2-yl)-1H-pyrazol-4-yl]selenide methanol monosolvate (0.1 g, 0.234 mmol) (Seredyuk et al., 2010a) was dissolved. After several weeks,well formed blue-green crystals were formed and isolated. Analysis, calculated for C18H26Cu2N9O14Se: C 27.07, H 3.28, N 15.79%; found: C 27.15, H 3.14, N 15.70%.

Refinement top

H atoms on NH groups and the coordinated water molecules were located from a difference Fourier map and constrained to ride on their parent atoms, with Uiso(H) = 1.2 or 1.5Ueq(N, O). One of the H atoms attached to the coordinated water molecule O9 was found to be disordered over two positions with an occupancy ratio of 0.5:0.5 (as O9 forms a hydrogen bond with its symmetry-related water molecule through H2O9, which limits the occupancy by 1/2). Lattice water molecule was found to be disordered over two sites (O1WA and O1WB), with an occupancy ratio of 0.5:0.5. O1WA and O1WB were restrained with effective standard deviation 0.01 so that its Uij components approximate to isotropic behavior. H atoms of the disordered water molecule were placed at calculated positions (Nardelli, 1999) and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O). C-bound H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96 (CH3) Å and Uiso(H) = 1.2(1.5 for methyl)Ueq(C). Noticeable thermal vibrations of O atoms were observed in some of the nitrate anions, so that geometric constraints were placed on some of the nitrate O atoms to improve their geometries and thermal ellipsoid parameters. The highest residual electron density was found 0.88 Å from O7, and the deepest hole 0.27 Å from O7.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids. Hydrogen bonds are indicated by dashed lines. H atoms are omitted for clarity. [Symmetry codes: (i) x, y, -1+z; (ii) 1-x, -y, 1-z; (iii) -x, -y, 1-z.]
[Figure 2] Fig. 2. A part of the crystal packing showing ππ stacking interactions between the pyridine rings (dashed lines).
[Aquabis(nitrato-κO)copper(II)]µ-{bis[5-methyl-3-(pyridin-2-yl)- 1H-pyrazol-4-yl]selenide}-[diaqua(nitrato-κO)copper(II)] nitrate monohydrate top
Crystal data top
[Cu2(NO3)3(C18H16N6Se)(H2O)3]NO3·H2OZ = 2
Mr = 842.51F(000) = 844
Triclinic, P1Dx = 1.889 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.102 (2) ÅCell parameters from 6135 reflections
b = 11.629 (2) Åθ = 3.5–28.4°
c = 12.796 (3) ŵ = 2.76 mm1
α = 98.56 (3)°T = 100 K
β = 93.07 (3)°Block, green
γ = 93.04 (3)°0.27 × 0.23 × 0.13 mm
V = 1481.5 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6511 independent reflections
Radiation source: fine-focus sealed tube5817 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ and ω scansθmax = 28.4°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.476, Tmax = 0.716k = 1515
11167 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.223H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1001P)2]
where P = (Fo2 + 2Fc2)/3
6511 reflections(Δ/σ)max = 0.002
418 parametersΔρmax = 2.05 e Å3
39 restraintsΔρmin = 1.35 e Å3
Crystal data top
[Cu2(NO3)3(C18H16N6Se)(H2O)3]NO3·H2Oγ = 93.04 (3)°
Mr = 842.51V = 1481.5 (5) Å3
Triclinic, P1Z = 2
a = 10.102 (2) ÅMo Kα radiation
b = 11.629 (2) ŵ = 2.76 mm1
c = 12.796 (3) ÅT = 100 K
α = 98.56 (3)°0.27 × 0.23 × 0.13 mm
β = 93.07 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
6511 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5817 reflections with I > 2σ(I)
Tmin = 0.476, Tmax = 0.716Rint = 0.073
11167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08039 restraints
wR(F2) = 0.223H-atom parameters constrained
S = 1.02Δρmax = 2.05 e Å3
6511 reflectionsΔρmin = 1.35 e Å3
418 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Se10.21129 (9)0.43349 (8)0.24378 (7)0.0235 (3)
Cu10.02084 (10)0.23134 (10)0.60026 (9)0.0206 (3)
Cu20.44191 (10)0.14805 (10)0.10606 (9)0.0216 (3)
O10.5970 (6)0.0816 (5)0.1753 (5)0.0272 (16)
H1O10.59920.13080.21820.041*
H2O10.68540.06430.14490.041*
O20.3959 (6)0.2470 (6)0.2494 (5)0.0316 (16)
O30.4542 (10)0.3529 (9)0.3672 (9)0.0775 (16)
O40.5925 (10)0.2392 (9)0.3114 (9)0.0775 (16)
O50.3321 (6)0.0230 (6)0.1982 (6)0.0372 (18)
O60.3899 (10)0.0632 (9)0.0650 (10)0.0775 (16)
O70.2943 (10)0.1626 (9)0.2145 (9)0.0775 (16)
O80.1528 (6)0.1420 (6)0.6666 (5)0.0258 (15)
H1O80.11650.08330.68900.039*
H2O80.22300.17980.71260.039*
O90.1007 (6)0.0624 (6)0.5480 (5)0.0289 (15)
H1O90.11270.03300.60440.043*
H2O90.04100.02530.51550.043*0.50
H3O90.16770.08100.51210.043*0.50
O100.0814 (6)0.2541 (5)0.7294 (5)0.0211 (14)
O110.0904 (6)0.3763 (5)0.7686 (5)0.0254 (15)
O120.0468 (7)0.3494 (6)0.8898 (5)0.0302 (16)
O130.1565 (6)0.0198 (6)0.7310 (5)0.0289 (16)
O140.0347 (6)0.0339 (6)0.8173 (5)0.0245 (15)
O150.1499 (6)0.0426 (6)0.8989 (5)0.0266 (15)
O1WA0.3744 (16)0.0262 (14)0.5467 (12)0.052 (3)0.50
H1WA0.37500.02190.61570.078*0.50
H2WA0.45600.00740.52620.078*0.50
O1WB0.2742 (16)0.1094 (14)0.6081 (12)0.052 (3)0.50
H1WB0.22200.17010.56590.078*0.50
H2WB0.28540.12590.67280.078*0.50
N10.2979 (7)0.2094 (6)0.0216 (6)0.0208 (17)
N20.1677 (7)0.1782 (6)0.0076 (6)0.0191 (16)
H1N20.13580.12210.04610.023*
N30.5397 (7)0.2878 (6)0.0177 (6)0.0188 (16)
N40.1334 (7)0.2424 (7)0.4797 (6)0.0222 (17)
N50.2575 (7)0.2116 (7)0.4554 (6)0.0228 (17)
H1N0.30320.16550.48730.027*
N60.0912 (7)0.3259 (7)0.5166 (6)0.0224 (17)
N70.3367 (10)0.0720 (9)0.1549 (10)0.062 (3)
N80.4817 (9)0.2826 (8)0.3083 (7)0.037 (2)
N90.0101 (7)0.3290 (7)0.7998 (6)0.0243 (18)
N100.0915 (7)0.0180 (6)0.8146 (6)0.0224 (17)
C10.0184 (8)0.2275 (8)0.1079 (7)0.021 (2)
H1A0.06620.16770.05820.031*
H1B0.06110.29940.10850.031*
H1C0.01750.20550.17730.031*
C20.1202 (8)0.2428 (8)0.0766 (6)0.0164 (18)
C30.2234 (9)0.3198 (8)0.1218 (7)0.022 (2)
C40.3337 (8)0.2966 (8)0.0588 (7)0.0184 (18)
C50.4711 (8)0.3463 (8)0.0583 (7)0.0198 (19)
C60.5225 (9)0.4453 (7)0.1248 (7)0.0203 (19)
H60.47250.48360.17660.024*
C70.6512 (8)0.4853 (8)0.1111 (7)0.0213 (19)
H70.68890.55140.15470.026*
C80.7243 (9)0.4275 (8)0.0331 (7)0.024 (2)
H80.81020.45480.02320.029*
C90.6673 (8)0.3289 (7)0.0294 (7)0.0178 (18)
H90.71640.28900.08100.021*
C100.4320 (9)0.2365 (10)0.3298 (9)0.039 (3)
H10A0.48720.20590.38120.059*
H10B0.47440.30680.31320.059*
H10C0.41850.18020.26670.059*
C110.2990 (9)0.2627 (8)0.3746 (7)0.0216 (19)
C120.1988 (9)0.3295 (7)0.3456 (7)0.0189 (19)
C130.0964 (8)0.3147 (8)0.4154 (7)0.021 (2)
C140.0378 (8)0.3594 (8)0.4312 (7)0.0181 (18)
C150.1049 (9)0.4238 (8)0.3645 (7)0.024 (2)
H150.06660.44410.30480.029*
C160.2299 (9)0.4566 (8)0.3895 (8)0.024 (2)
H160.27690.50150.34780.029*
C170.2853 (9)0.4213 (8)0.4786 (8)0.027 (2)
H170.36950.44280.49640.032*
C180.2157 (8)0.3552 (8)0.5394 (7)0.021 (2)
H180.25420.33000.59710.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0247 (5)0.0220 (5)0.0236 (5)0.0016 (4)0.0123 (4)0.0003 (4)
Cu10.0187 (6)0.0248 (6)0.0192 (6)0.0027 (5)0.0057 (4)0.0040 (5)
Cu20.0157 (6)0.0244 (6)0.0249 (6)0.0036 (5)0.0069 (5)0.0016 (5)
O10.016 (3)0.030 (4)0.035 (4)0.008 (3)0.009 (3)0.002 (3)
O20.022 (4)0.041 (4)0.034 (4)0.004 (3)0.010 (3)0.009 (3)
O30.069 (3)0.074 (3)0.101 (4)0.022 (3)0.039 (3)0.032 (3)
O40.069 (3)0.074 (3)0.101 (4)0.022 (3)0.039 (3)0.032 (3)
O50.023 (4)0.027 (4)0.059 (5)0.007 (3)0.008 (3)0.007 (4)
O60.069 (3)0.074 (3)0.101 (4)0.022 (3)0.039 (3)0.032 (3)
O70.069 (3)0.074 (3)0.101 (4)0.022 (3)0.039 (3)0.032 (3)
O80.021 (3)0.035 (4)0.023 (4)0.004 (3)0.002 (3)0.008 (3)
O90.034 (4)0.029 (4)0.022 (4)0.004 (3)0.001 (3)0.003 (3)
O100.023 (3)0.025 (3)0.014 (3)0.002 (3)0.001 (3)0.003 (3)
O110.019 (3)0.028 (4)0.030 (4)0.001 (3)0.006 (3)0.005 (3)
O120.037 (4)0.039 (4)0.015 (3)0.012 (3)0.013 (3)0.001 (3)
O130.029 (4)0.038 (4)0.018 (4)0.005 (3)0.006 (3)0.002 (3)
O140.011 (3)0.035 (4)0.027 (4)0.003 (3)0.005 (3)0.005 (3)
O150.026 (4)0.036 (4)0.018 (3)0.006 (3)0.009 (3)0.001 (3)
O1WA0.063 (6)0.054 (5)0.036 (5)0.032 (5)0.013 (4)0.008 (4)
O1WB0.063 (6)0.054 (5)0.036 (5)0.032 (5)0.013 (4)0.008 (4)
N10.007 (3)0.026 (4)0.029 (4)0.002 (3)0.004 (3)0.001 (3)
N20.017 (4)0.018 (4)0.023 (4)0.000 (3)0.008 (3)0.003 (3)
N30.012 (4)0.022 (4)0.023 (4)0.003 (3)0.005 (3)0.003 (3)
N40.016 (4)0.023 (4)0.028 (4)0.004 (3)0.007 (3)0.003 (3)
N50.014 (4)0.029 (4)0.024 (4)0.000 (3)0.000 (3)0.002 (3)
N60.014 (4)0.026 (4)0.027 (4)0.005 (3)0.004 (3)0.003 (3)
N70.036 (5)0.047 (6)0.094 (7)0.010 (5)0.026 (5)0.022 (6)
N80.041 (6)0.035 (5)0.038 (5)0.007 (4)0.013 (4)0.011 (4)
N90.015 (4)0.027 (4)0.032 (5)0.004 (3)0.002 (3)0.005 (4)
N100.021 (4)0.020 (4)0.028 (5)0.002 (3)0.010 (3)0.006 (3)
C10.007 (4)0.036 (5)0.019 (5)0.009 (4)0.006 (3)0.001 (4)
C20.006 (4)0.030 (5)0.013 (4)0.002 (3)0.001 (3)0.000 (4)
C30.023 (5)0.027 (5)0.016 (5)0.000 (4)0.013 (4)0.002 (4)
C40.016 (4)0.026 (5)0.014 (4)0.004 (4)0.010 (3)0.004 (3)
C50.012 (4)0.029 (5)0.021 (5)0.000 (4)0.006 (4)0.008 (4)
C60.021 (5)0.019 (5)0.021 (5)0.008 (4)0.003 (4)0.003 (4)
C70.013 (4)0.021 (5)0.027 (5)0.003 (4)0.000 (4)0.002 (4)
C80.019 (5)0.023 (5)0.032 (6)0.004 (4)0.009 (4)0.005 (4)
C90.012 (4)0.022 (5)0.019 (5)0.006 (3)0.002 (3)0.001 (4)
C100.016 (5)0.065 (8)0.039 (7)0.009 (5)0.016 (5)0.011 (6)
C110.019 (5)0.023 (5)0.022 (5)0.001 (4)0.004 (4)0.000 (4)
C120.022 (5)0.018 (5)0.016 (4)0.005 (4)0.010 (4)0.002 (3)
C130.012 (4)0.022 (5)0.026 (5)0.004 (4)0.005 (4)0.000 (4)
C140.017 (4)0.022 (5)0.013 (4)0.003 (4)0.004 (3)0.005 (3)
C150.023 (5)0.027 (5)0.022 (5)0.001 (4)0.009 (4)0.002 (4)
C160.019 (5)0.027 (5)0.030 (5)0.007 (4)0.007 (4)0.014 (4)
C170.021 (5)0.032 (6)0.028 (5)0.007 (4)0.014 (4)0.003 (4)
C180.016 (4)0.026 (5)0.019 (5)0.007 (4)0.003 (4)0.002 (4)
Geometric parameters (Å, º) top
Se1—C31.903 (9)N3—C51.348 (10)
Se1—C121.909 (9)N3—C91.374 (10)
Cu1—O81.966 (6)N4—C131.315 (11)
Cu1—N41.980 (7)N4—N51.361 (10)
Cu1—O101.988 (6)N5—C111.342 (11)
Cu1—N61.998 (7)N5—H1N0.8600
Cu1—O92.254 (7)N6—C141.342 (11)
Cu2—N11.961 (7)N6—C181.356 (10)
Cu2—O11.978 (6)C1—C21.486 (11)
Cu2—O51.979 (7)C1—H1A0.9600
Cu2—N32.015 (7)C1—H1B0.9600
Cu2—O22.345 (7)C1—H1C0.9600
O1—H1O10.8502C2—C31.380 (12)
O1—H2O10.9965C3—C41.425 (11)
O2—N81.270 (10)C4—C51.476 (11)
O3—N81.225 (12)C5—C61.384 (12)
O4—N81.252 (12)C6—C71.386 (12)
O5—N71.309 (12)C6—H60.9300
O6—N71.231 (12)C7—C81.389 (12)
O7—N71.247 (12)C7—H70.9300
O8—H1O80.8521C8—C91.376 (12)
O8—H2O80.9420C8—H80.9300
O9—H1O90.8544C9—H90.9300
O9—H2O90.8510C10—C111.516 (12)
O9—H3O90.8534C10—H10A0.9600
O10—N91.311 (9)C10—H10B0.9600
O11—N91.242 (9)C10—H10C0.9600
O12—N91.222 (9)C11—C121.377 (12)
O13—N101.233 (10)C12—C131.423 (11)
O14—N101.276 (9)C13—C141.490 (11)
O15—N101.261 (9)C14—C151.390 (13)
O1WA—H1WA0.8913C15—C161.379 (12)
O1WA—H2WA0.9065C15—H150.9300
O1WB—H1WB0.9407C16—C171.402 (12)
O1WB—H2WB0.8807C16—H160.9300
N1—C41.352 (11)C17—C181.366 (13)
N1—N21.373 (9)C17—H170.9300
N2—C21.344 (10)C18—H180.9300
N2—H1N20.7989
C3—Se1—C1297.9 (4)O11—N9—O10116.5 (7)
O8—Cu1—N491.0 (3)O13—N10—O15119.9 (7)
O8—Cu1—O1092.5 (3)O13—N10—O14121.1 (7)
N4—Cu1—O10168.5 (3)O15—N10—O14119.0 (8)
O8—Cu1—N6170.8 (3)C2—C1—H1A109.5
N4—Cu1—N679.9 (3)C2—C1—H1B109.5
O10—Cu1—N696.1 (3)H1A—C1—H1B109.5
O8—Cu1—O988.0 (3)C2—C1—H1C109.5
N4—Cu1—O9102.8 (3)H1A—C1—H1C109.5
O10—Cu1—O988.3 (2)H1B—C1—H1C109.5
N6—Cu1—O995.3 (3)N2—C2—C3106.4 (7)
N1—Cu2—O1173.1 (3)N2—C2—C1123.3 (8)
N1—Cu2—O596.5 (3)C3—C2—C1130.3 (8)
O1—Cu2—O586.7 (3)C2—C3—C4106.5 (8)
N1—Cu2—N380.1 (3)C2—C3—Se1124.5 (6)
O1—Cu2—N397.3 (3)C4—C3—Se1129.1 (7)
O5—Cu2—N3173.7 (3)N1—C4—C3109.3 (8)
N1—Cu2—O296.1 (3)N1—C4—C5114.7 (7)
O1—Cu2—O290.4 (3)C3—C4—C5136.0 (8)
O5—Cu2—O281.3 (3)N3—C5—C6123.4 (8)
N3—Cu2—O293.7 (3)N3—C5—C4112.4 (8)
Cu2—O1—H1O193.2C6—C5—C4124.1 (8)
Cu2—O1—H2O1131.0C5—C6—C7117.5 (8)
H1O1—O1—H2O1115.1C5—C6—H6121.3
N8—O2—Cu2125.3 (6)C7—C6—H6121.3
N7—O5—Cu2108.0 (7)C6—C7—C8120.6 (8)
Cu1—O8—H1O8111.7C6—C7—H7119.7
Cu1—O8—H2O8121.2C8—C7—H7119.7
H1O8—O8—H2O8113.1C9—C8—C7118.8 (8)
Cu1—O9—H1O9105.7C9—C8—H8120.6
Cu1—O9—H2O997.5C7—C8—H8120.6
H1O9—O9—H2O9107.5N3—C9—C8121.8 (8)
Cu1—O9—H3O9104.7N3—C9—H9119.1
H1O9—O9—H3O9119.4C8—C9—H9119.1
H2O9—O9—H3O9118.8C11—C10—H10A109.5
N9—O10—Cu1106.7 (5)C11—C10—H10B109.5
H1WA—O1WA—H2WA106.2H10A—C10—H10B109.5
H1WB—O1WB—H2WB109.3C11—C10—H10C109.5
C4—N1—N2105.2 (7)H10A—C10—H10C109.5
C4—N1—Cu2115.9 (5)H10B—C10—H10C109.5
N2—N1—Cu2137.9 (6)N5—C11—C12107.0 (7)
C2—N2—N1112.7 (7)N5—C11—C10120.4 (8)
C2—N2—H1N2130.9C12—C11—C10132.5 (9)
N1—N2—H1N2116.0C11—C12—C13105.7 (8)
C5—N3—C9118.0 (7)C11—C12—Se1124.9 (6)
C5—N3—Cu2115.9 (6)C13—C12—Se1129.0 (7)
C9—N3—Cu2126.1 (6)N4—C13—C12109.1 (8)
C13—N4—N5107.3 (7)N4—C13—C14115.0 (7)
C13—N4—Cu1115.8 (6)C12—C13—C14135.9 (9)
N5—N4—Cu1135.4 (6)N6—C14—C15122.6 (8)
C11—N5—N4110.9 (7)N6—C14—C13112.0 (8)
C11—N5—H1N124.5C15—C14—C13125.3 (8)
N4—N5—H1N124.6C16—C15—C14118.0 (8)
C14—N6—C18119.4 (8)C16—C15—H15121.0
C14—N6—Cu1116.2 (6)C14—C15—H15121.0
C18—N6—Cu1124.4 (6)C15—C16—C17119.1 (9)
O6—N7—O7127.9 (13)C15—C16—H16120.4
O6—N7—O5117.4 (10)C17—C16—H16120.4
O7—N7—O5114.4 (12)C18—C17—C16120.1 (8)
O3—N8—O4119.6 (10)C18—C17—H17120.0
O3—N8—O2120.7 (9)C16—C17—H17120.0
O4—N8—O2119.5 (9)N6—C18—C17120.8 (8)
O12—N9—O11124.5 (8)N6—C18—H18119.6
O12—N9—O10119.0 (7)C17—C18—H18119.6
N1—Cu2—O2—N8148.5 (7)N2—N1—C4—C30.7 (9)
O1—Cu2—O2—N829.2 (7)Cu2—N1—C4—C3171.5 (6)
O5—Cu2—O2—N8115.8 (7)N2—N1—C4—C5178.7 (7)
N3—Cu2—O2—N868.1 (7)Cu2—N1—C4—C510.6 (10)
N1—Cu2—O5—N792.2 (6)C2—C3—C4—N10.3 (10)
O1—Cu2—O5—N781.7 (6)Se1—C3—C4—N1179.0 (7)
O2—Cu2—O5—N7172.6 (6)C2—C3—C4—C5177.7 (10)
O8—Cu1—O10—N972.0 (5)Se1—C3—C4—C51.7 (16)
N4—Cu1—O10—N935.9 (16)C9—N3—C5—C60.1 (13)
N6—Cu1—O10—N9105.0 (5)Cu2—N3—C5—C6178.8 (7)
O9—Cu1—O10—N9159.9 (5)C9—N3—C5—C4177.1 (7)
O5—Cu2—N1—C4176.4 (6)Cu2—N3—C5—C41.9 (9)
N3—Cu2—N1—C49.0 (6)N1—C4—C5—N35.5 (11)
O2—Cu2—N1—C4101.7 (6)C3—C4—C5—N3177.2 (10)
O5—Cu2—N1—N29.8 (9)N1—C4—C5—C6171.4 (8)
N3—Cu2—N1—N2175.5 (9)C3—C4—C5—C65.8 (16)
O2—Cu2—N1—N291.7 (9)N3—C5—C6—C70.1 (13)
C4—N1—N2—C20.9 (9)C4—C5—C6—C7176.5 (8)
Cu2—N1—N2—C2168.4 (7)C5—C6—C7—C80.3 (13)
N1—Cu2—N3—C55.8 (6)C6—C7—C8—C90.9 (14)
O1—Cu2—N3—C5167.8 (6)C5—N3—C9—C80.8 (12)
O2—Cu2—N3—C5101.3 (6)Cu2—N3—C9—C8178.0 (7)
N1—Cu2—N3—C9173.1 (7)C7—C8—C9—N31.2 (13)
O1—Cu2—N3—C913.4 (7)N4—N5—C11—C120.3 (10)
O2—Cu2—N3—C977.5 (7)N4—N5—C11—C10176.9 (8)
O8—Cu1—N4—C13169.3 (7)N5—C11—C12—C130.4 (10)
O10—Cu1—N4—C1361.3 (17)C10—C11—C12—C13177.2 (10)
N6—Cu1—N4—C139.3 (6)N5—C11—C12—Se1173.5 (6)
O9—Cu1—N4—C13102.5 (7)C10—C11—C12—Se19.8 (15)
O8—Cu1—N4—N55.6 (8)C3—Se1—C12—C1167.1 (8)
O10—Cu1—N4—N5102.4 (15)C3—Se1—C12—C13121.5 (8)
N6—Cu1—N4—N5173.0 (9)N5—N4—C13—C121.2 (10)
O9—Cu1—N4—N593.7 (8)Cu1—N4—C13—C12169.3 (6)
C13—N4—N5—C111.0 (10)N5—N4—C13—C14179.3 (7)
Cu1—N4—N5—C11165.6 (7)Cu1—N4—C13—C1411.2 (10)
N4—Cu1—N6—C145.6 (6)C11—C12—C13—N41.0 (10)
O10—Cu1—N6—C14163.4 (6)Se1—C12—C13—N4173.7 (7)
O9—Cu1—N6—C14107.7 (6)C11—C12—C13—C14179.6 (10)
N4—Cu1—N6—C18172.9 (8)Se1—C12—C13—C146.9 (15)
O10—Cu1—N6—C1818.0 (7)C18—N6—C14—C150.2 (13)
O9—Cu1—N6—C1870.8 (7)Cu1—N6—C14—C15178.9 (7)
Cu2—O5—N7—O68.7 (12)C18—N6—C14—C13177.2 (7)
Cu2—O5—N7—O7166.3 (8)Cu1—N6—C14—C131.5 (9)
Cu2—O2—N8—O3165.3 (8)N4—C13—C14—N66.3 (11)
Cu2—O2—N8—O419.6 (13)C12—C13—C14—N6174.4 (9)
Cu1—O10—N9—O12173.5 (6)N4—C13—C14—C15171.0 (9)
Cu1—O10—N9—O117.8 (8)C12—C13—C14—C158.4 (16)
N1—N2—C2—C30.7 (10)N6—C14—C15—C161.7 (14)
N1—N2—C2—C1179.2 (8)C13—C14—C15—C16178.7 (8)
N2—C2—C3—C40.2 (10)C14—C15—C16—C171.7 (14)
C1—C2—C3—C4179.6 (9)C15—C16—C17—C180.1 (14)
N2—C2—C3—Se1179.6 (6)C14—N6—C18—C172.1 (13)
C1—C2—C3—Se10.3 (14)Cu1—N6—C18—C17179.4 (7)
C12—Se1—C3—C270.2 (8)C16—C17—C18—N62.0 (14)
C12—Se1—C3—C4110.6 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O40.851.862.710 (12)176
O1—H2O1···O15i1.001.772.763 (9)174
O8—H1O8···O140.852.022.744 (9)142
O8—H2O8···O2ii0.941.882.772 (9)156
O9—H1O9···O130.851.882.732 (9)173
O9—H2O9···O9iii0.851.942.794 (9)175
O9—H3O9···O1WAiii0.852.403.024 (18)131
O9—H3O9···O1WBiii0.851.912.723 (16)159
N2—H1N2···O14iv0.802.082.822 (10)155
N5—H1N···O1WA0.862.042.878 (18)166
O1WA—H1WA···O5ii0.892.443.320 (17)169
O1WA—H2WA···O1WAv0.912.022.92 (3)169
O1WB—H2WB···O7ii0.881.562.441 (19)175
Symmetry codes: (i) x+1, y, z1; (ii) x, y, z+1; (iii) x, y, z+1; (iv) x, y, z1; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(NO3)3(C18H16N6Se)(H2O)3]NO3·H2O
Mr842.51
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.102 (2), 11.629 (2), 12.796 (3)
α, β, γ (°)98.56 (3), 93.07 (3), 93.04 (3)
V3)1481.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.76
Crystal size (mm)0.27 × 0.23 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.476, 0.716
No. of measured, independent and
observed [I > 2σ(I)] reflections
11167, 6511, 5817
Rint0.073
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.223, 1.02
No. of reflections6511
No. of parameters418
No. of restraints39
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.05, 1.35

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O40.851.862.710 (12)176
O1—H2O1···O15i1.001.772.763 (9)174
O8—H1O8···O140.852.022.744 (9)142
O8—H2O8···O2ii0.941.882.772 (9)156
O9—H1O9···O130.851.882.732 (9)173
O9—H2O9···O9iii0.851.942.794 (9)175
O9—H3O9···O1WAiii0.852.403.024 (18)131
O9—H3O9···O1WBiii0.851.912.723 (16)159
N2—H1N2···O14iv0.802.082.822 (10)155
N5—H1N···O1WA0.862.042.878 (18)166
O1WA—H1WA···O5ii0.892.443.320 (17)169
O1WA—H2WA···O1WAv0.912.022.92 (3)169
O1WB—H2WB···O7ii0.881.562.441 (19)175
Symmetry codes: (i) x+1, y, z1; (ii) x, y, z+1; (iii) x, y, z+1; (iv) x, y, z1; (v) x+1, y, z+1.
 

Acknowledgements

Financial support from the State Fund for Fundamental Researches of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged. MS thanks the EU for a Marie Curie fellowship (IIF-253254). We also thank Professor Igor O. Fritsky for helpful discussions.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Inorg. Chim. Acta, 346, 111–118.  Web of Science CSD CrossRef CAS Google Scholar
First citationFritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.  Web of Science CSD CrossRef CAS Google Scholar
First citationKanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.  Web of Science CrossRef PubMed Google Scholar
First citationKovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881.  Web of Science CrossRef Google Scholar
First citationKrämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.  Google Scholar
First citationKrämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307–1314.  Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMoroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNardelli, M. (1999). J. Appl. Cryst. 32, 563–571.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPenkova, L. V., Maciąg, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.  Google Scholar
First citationSeredyuk, M., Fritsky, I. O., Krämer, R., Kozlowski, H., Haukka, M. & Gütlich, P. (2010a). Tetrahedron, 66, 8772–8777.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSeredyuk, M., Haukka, M., Pavlenko, V. A. & Fritsky, I. O. (2009). Acta Cryst. E65, m1396.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSeredyuk, M., Moroz, Y. S., Znovjyak, K. O., Pavlenko, V. A. & Fritsky, I. O. (2010b). Acta Cryst. E66, m363.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSeredyuk, M., Pavlenko, V. A., Znovjyak, K. O., Gumienna-Kontecka, E. & Penkova, L. (2012). Acta Cryst. E68, o2068.  CSD CrossRef IUCr Journals Google Scholar
First citationSeredyuk, M., Znovjyak, K. O., Moroz, Y. S., Pavlenko, V. A. & Fritsky, I. O. (2010c). Acta Cryst. E66, m527.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeredyuk, M., Znovjyak, K. O., Sliva, T. Y., Haukka, M. & Fritsky, I. O. (2011). Acta Cryst. E67, o3083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1472-m1473
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds