metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ-3,5,9,11-Tetra­oxo-4,10-di­aza­tetra­cyclo­[5.5.2.02,6.08,12]tetra­dec-13-ene-4,10-diido-κ2N:N′)bis­­[(2,2′-bi­pyridine-κ2N,N′)silver(I)] dihydrate

aSchool of Chemistry and Life Science, Anshan Normal University, Anshan, Liaoning 114000, People's Republic of China
*Correspondence e-mail: chemzhangym@163.com

(Received 3 September 2012; accepted 9 September 2012; online 15 September 2012)

In the title complex, [Ag2(C12H8N2O4)(C10H8N2)2]·2H2O, the AgI ion is three-coordinated by two N atoms from a chelating 2,2′-bipyridine ligand and one N atom from an imide ligand in a Y-shaped fashion. The imide ligand and the complex lie on a twofold rotation axis. The ligand bridges two AgI ions, forming a dinuclear complex. In the crystal, O—H⋯O hydrogen bonds link the lattice water mol­ecules and the complex mol­ecules into a ribbon-like structure along [001]. ππ inter­actions are observed between the pyridine rings [centroid–centroid distance = 3.8289 (14) Å].

Related literature

For structures and properties of mixed-ligand coordination polymers, see: Song et al. (2012[Song, X.-Z., Qin, C., Guan, W., Song, S.-Y. & Zhang, H.-J. (2012). New J. Chem. 36, 877-882.]); Wang (2010[Wang, B. (2010). Acta Cryst. E66, o1473.]). For the use of mol­ecular building blocks associated with polydentate carb­oxy­lic acids, see: Liao et al. (2008[Liao, C. Y., Chan, K. T., Chiu, P. L., Chen, C. Y. & Lee, H. M. (2008). Inorg. Chim. Acta, 361, 2973-2978.]); Wang et al. (2009[Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568-m1569.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C12H8N2O4)(C10H8N2)2]·2H2O

  • Mr = 808.34

  • Monoclinic, C 2/c

  • a = 22.2720 (12) Å

  • b = 7.1013 (4) Å

  • c = 19.6329 (11) Å

  • β = 108.376 (1)°

  • V = 2946.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.39 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.712, Tmax = 0.758

  • 7869 measured reflections

  • 2923 independent reflections

  • 2588 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.051

  • S = 1.03

  • 2923 reflections

  • 214 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O2 0.81 (3) 2.07 (2) 2.839 (2) 159 (3)
O1W—H1B⋯O2i 0.82 (3) 2.13 (3) 2.952 (3) 175 (2)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The assembly of mixed-ligand coordination polymers has attracted great attention due to their intriguingly complicated architectures and potential applications in adsorption, separation and magnetism (Song et al., 2012; Wang, 2010). Molecular building blocks associated with polydentate carboxylic acids are widely used in chiral catalysis, optoelectronic materials, hematopathology and medicine (Liao et al., 2008; Wang et al., 2009). In our laboratory, we synthesized a new silver(I) complex constructed by an amide molecule in combination with 2,2-bipyridine as ancillary ligand.

In the title complex, the amide ligand lies on a twofold rotation axis and bridges two 2,2'-bipyridine-chelated AgI atoms. The AgI atom is three-coordinated by two N atoms of a 2,2'-bipyridine ligand [Ag—N distances = 2.3510 (18) and 2.2380 (18) Å] and one N atom from an amide ligand [Ag—N distance = 2.1123 (17) Å]. In the crystal, O—H···O hydrogen bonds link the uncoordinated water molecules and the complex molecules into a ribbon-like structure. ππ interactions between the pyridine rings are observed [centroid–centroid distance = 3.8289 (14) Å].

Related literature top

For structures and properties of mixed-ligand coordination polymers, see: Song et al. (2012); Wang (2010). For the use of molecular building blocks associated with polydentate carboxylic acids, see: Liao et al. (2008); Wang et al. (2009).

Experimental top

A mixture of bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (0.1 mmol, 0.025 g), 2,2'-bipyridine (0.2 mmol, 0.080 g), silver nitrate (0.2 mmol, 0.034 g) and H2O (15 ml) was stirred for ten minutes. Dilute ammonia was dropwised into the mixture until the mixture turned to transparent. Colorless block crystals of the title compound were isolated after the evaporation of ammonia.

Refinement top

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and 0.98 Å and with Uiso(H) = 1.2Ueq(C). H atoms bonded to O atoms were located in a difference Fourier map and refined with O—H distance restraints of 0.85 (2) Å and with Uiso(H) = 1.5Ueq(O).

Structure description top

The assembly of mixed-ligand coordination polymers has attracted great attention due to their intriguingly complicated architectures and potential applications in adsorption, separation and magnetism (Song et al., 2012; Wang, 2010). Molecular building blocks associated with polydentate carboxylic acids are widely used in chiral catalysis, optoelectronic materials, hematopathology and medicine (Liao et al., 2008; Wang et al., 2009). In our laboratory, we synthesized a new silver(I) complex constructed by an amide molecule in combination with 2,2-bipyridine as ancillary ligand.

In the title complex, the amide ligand lies on a twofold rotation axis and bridges two 2,2'-bipyridine-chelated AgI atoms. The AgI atom is three-coordinated by two N atoms of a 2,2'-bipyridine ligand [Ag—N distances = 2.3510 (18) and 2.2380 (18) Å] and one N atom from an amide ligand [Ag—N distance = 2.1123 (17) Å]. In the crystal, O—H···O hydrogen bonds link the uncoordinated water molecules and the complex molecules into a ribbon-like structure. ππ interactions between the pyridine rings are observed [centroid–centroid distance = 3.8289 (14) Å].

For structures and properties of mixed-ligand coordination polymers, see: Song et al. (2012); Wang (2010). For the use of molecular building blocks associated with polydentate carboxylic acids, see: Liao et al. (2008); Wang et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) 1-x, y, 1/2-z.]
[Figure 2] Fig. 2. View of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
(µ-3,5,9,11-Tetraoxo-4,10-diazatetracyclo[5.5.2.02,6.08,12]tetradec- 13-ene-4,10-diido-κ2N:N')bis[(2,2'-bipyridine- κ2N,N')silver(I)] dihydrate top
Crystal data top
[Ag2(C12H8N2O4)(C10H8N2)2]·2H2OF(000) = 1616
Mr = 808.34Dx = 1.822 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2928 reflections
a = 22.2720 (12) Åθ = 1.0–26.1°
b = 7.1013 (4) ŵ = 1.39 mm1
c = 19.6329 (11) ÅT = 293 K
β = 108.376 (1)°Block, colorless
V = 2946.8 (3) Å30.24 × 0.22 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2923 independent reflections
Radiation source: fine-focus sealed tube2588 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 26.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2714
Tmin = 0.712, Tmax = 0.758k = 87
7869 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0222P)2 + 3.2161P]
where P = (Fo2 + 2Fc2)/3
2923 reflections(Δ/σ)max = 0.002
214 parametersΔρmax = 0.30 e Å3
2 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ag2(C12H8N2O4)(C10H8N2)2]·2H2OV = 2946.8 (3) Å3
Mr = 808.34Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.2720 (12) ŵ = 1.39 mm1
b = 7.1013 (4) ÅT = 293 K
c = 19.6329 (11) Å0.24 × 0.22 × 0.21 mm
β = 108.376 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2923 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2588 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.758Rint = 0.020
7869 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0212 restraints
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.30 e Å3
2923 reflectionsΔρmin = 0.32 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.301043 (8)0.57692 (2)0.020063 (9)0.02934 (7)
C10.37168 (10)0.7372 (3)0.16827 (11)0.0247 (5)
C20.43266 (10)0.8225 (3)0.21718 (11)0.0232 (4)
H20.42540.95350.22820.028*
C30.47747 (10)0.8155 (3)0.17171 (11)0.0241 (5)
H30.48750.94360.16010.029*
C40.43841 (10)0.7149 (3)0.10388 (11)0.0236 (4)
C50.46134 (9)0.7102 (3)0.28753 (11)0.0229 (4)
H50.43210.70260.31570.027*
C60.47997 (9)0.5181 (3)0.26895 (11)0.0224 (4)
H60.46460.40770.28290.027*
C70.17622 (12)0.5344 (3)0.07607 (13)0.0352 (6)
H110.20080.60460.11490.042*
C80.11778 (13)0.4724 (4)0.07644 (15)0.0419 (6)
H120.10260.50360.11400.050*
C90.08256 (12)0.3642 (4)0.02055 (15)0.0437 (7)
H130.04320.31900.02000.052*
C100.10585 (11)0.3222 (3)0.03534 (14)0.0346 (5)
H140.08260.24780.07350.041*
C110.16472 (10)0.3932 (3)0.03348 (12)0.0248 (5)
C120.19220 (10)0.3621 (3)0.09278 (12)0.0254 (5)
C130.16013 (11)0.2632 (3)0.15462 (12)0.0308 (5)
H170.12060.21130.15960.037*
C140.18683 (12)0.2423 (4)0.20821 (13)0.0375 (6)
H180.16550.17690.24990.045*
C150.24567 (12)0.3190 (4)0.19984 (13)0.0376 (6)
H190.26470.30710.23550.045*
C160.27537 (11)0.4139 (3)0.13678 (13)0.0328 (5)
H200.31510.46520.13070.039*
N10.19911 (9)0.4976 (3)0.02200 (10)0.0282 (4)
N20.25001 (8)0.4358 (2)0.08404 (10)0.0263 (4)
N30.37858 (8)0.6828 (2)0.10383 (9)0.0239 (4)
O10.32354 (7)0.7175 (2)0.18440 (8)0.0329 (4)
O20.45990 (7)0.6671 (3)0.05599 (8)0.0349 (4)
O1W0.43224 (10)0.5971 (3)0.09313 (10)0.0525 (5)
H1A0.4321 (17)0.635 (5)0.0542 (13)0.079*
H1B0.4609 (14)0.519 (4)0.0847 (19)0.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02316 (10)0.03214 (11)0.02658 (10)0.00518 (7)0.00091 (7)0.00260 (7)
C10.0213 (11)0.0274 (11)0.0226 (11)0.0055 (9)0.0029 (9)0.0072 (9)
C20.0231 (10)0.0225 (11)0.0217 (11)0.0036 (9)0.0036 (9)0.0005 (9)
C30.0217 (10)0.0265 (11)0.0217 (11)0.0047 (9)0.0035 (9)0.0031 (9)
C40.0239 (11)0.0263 (11)0.0187 (10)0.0007 (9)0.0039 (9)0.0054 (9)
C50.0185 (10)0.0311 (11)0.0185 (10)0.0023 (9)0.0051 (8)0.0007 (9)
C60.0194 (10)0.0236 (10)0.0197 (11)0.0024 (9)0.0002 (8)0.0025 (9)
C70.0360 (13)0.0386 (14)0.0319 (13)0.0003 (11)0.0119 (11)0.0047 (11)
C80.0434 (15)0.0446 (15)0.0464 (16)0.0039 (12)0.0265 (13)0.0081 (13)
C90.0305 (13)0.0442 (15)0.0609 (18)0.0012 (12)0.0209 (13)0.0115 (14)
C100.0236 (11)0.0329 (13)0.0448 (15)0.0022 (10)0.0075 (11)0.0057 (11)
C110.0213 (11)0.0225 (11)0.0272 (12)0.0007 (9)0.0029 (9)0.0070 (9)
C120.0217 (10)0.0220 (10)0.0286 (12)0.0022 (9)0.0024 (9)0.0068 (9)
C130.0263 (12)0.0278 (12)0.0333 (13)0.0018 (10)0.0021 (10)0.0034 (10)
C140.0417 (14)0.0345 (13)0.0311 (13)0.0000 (11)0.0042 (11)0.0043 (11)
C150.0434 (14)0.0402 (14)0.0297 (13)0.0053 (12)0.0124 (11)0.0003 (11)
C160.0276 (12)0.0361 (13)0.0349 (13)0.0011 (10)0.0102 (10)0.0036 (11)
N10.0256 (10)0.0296 (10)0.0285 (11)0.0012 (8)0.0071 (8)0.0045 (8)
N20.0215 (9)0.0280 (10)0.0264 (10)0.0010 (8)0.0034 (8)0.0027 (8)
N30.0208 (9)0.0278 (10)0.0202 (9)0.0011 (8)0.0024 (7)0.0031 (7)
O10.0215 (8)0.0475 (10)0.0298 (8)0.0024 (7)0.0081 (7)0.0030 (8)
O20.0268 (8)0.0563 (11)0.0216 (8)0.0040 (8)0.0076 (7)0.0017 (8)
O1W0.0568 (13)0.0680 (14)0.0300 (10)0.0172 (11)0.0099 (10)0.0080 (10)
Geometric parameters (Å, º) top
Ag1—N32.1123 (17)C7—H110.9300
Ag1—N22.2380 (18)C8—C91.367 (4)
Ag1—N12.3510 (18)C8—H120.9300
Ag1—Ag1i3.2716 (4)C9—C101.386 (4)
C1—O11.218 (2)C9—H130.9300
C1—N31.377 (3)C10—C111.394 (3)
C1—C21.520 (3)C10—H140.9300
C2—C31.535 (3)C11—N11.341 (3)
C2—C51.548 (3)C11—C121.493 (3)
C2—H20.9800C12—N21.350 (3)
C3—C41.520 (3)C12—C131.390 (3)
C3—C5ii1.539 (3)C13—C141.370 (3)
C3—H30.9800C13—H170.9300
C4—O21.230 (3)C14—C151.380 (4)
C4—N31.352 (3)C14—H180.9300
C5—C61.504 (3)C15—C161.381 (3)
C5—C3ii1.539 (3)C15—H190.9300
C5—H50.9800C16—N21.336 (3)
C6—C6ii1.330 (4)C16—H200.9300
C6—H60.9300O1W—H1A0.81 (3)
C7—N11.340 (3)O1W—H1B0.82 (3)
C7—C81.376 (3)
N3—Ag1—N2157.77 (7)C9—C8—H12120.6
N3—Ag1—N1129.00 (7)C7—C8—H12120.6
N2—Ag1—N172.09 (7)C8—C9—C10119.6 (2)
N3—Ag1—Ag1i104.80 (5)C8—C9—H13120.2
N2—Ag1—Ag1i90.12 (5)C10—C9—H13120.2
N1—Ag1—Ag1i65.33 (5)C9—C10—C11119.0 (2)
O1—C1—N3124.7 (2)C9—C10—H14120.5
O1—C1—C2124.46 (19)C11—C10—H14120.5
N3—C1—C2110.86 (17)N1—C11—C10120.9 (2)
C1—C2—C3103.58 (16)N1—C11—C12116.48 (18)
C1—C2—C5113.16 (18)C10—C11—C12122.6 (2)
C3—C2—C5109.94 (17)N2—C12—C13120.9 (2)
C1—C2—H2110.0N2—C12—C11116.92 (19)
C3—C2—H2110.0C13—C12—C11122.1 (2)
C5—C2—H2110.0C14—C13—C12119.9 (2)
C4—C3—C2103.13 (16)C14—C13—H17120.1
C4—C3—C5ii113.28 (18)C12—C13—H17120.1
C2—C3—C5ii110.16 (16)C13—C14—C15119.4 (2)
C4—C3—H3110.0C13—C14—H18120.3
C2—C3—H3110.0C15—C14—H18120.3
C5ii—C3—H3110.0C14—C15—C16117.9 (2)
O2—C4—N3125.1 (2)C14—C15—H19121.1
O2—C4—C3123.12 (19)C16—C15—H19121.1
N3—C4—C3111.81 (18)N2—C16—C15123.5 (2)
C6—C5—C3ii107.48 (16)N2—C16—H20118.3
C6—C5—C2108.60 (16)C15—C16—H20118.3
C3ii—C5—C2105.19 (17)C7—N1—C11119.3 (2)
C6—C5—H5111.8C7—N1—Ag1125.20 (16)
C3ii—C5—H5111.8C11—N1—Ag1115.26 (14)
C2—C5—H5111.8C16—N2—C12118.4 (2)
C6ii—C6—C5114.88 (11)C16—N2—Ag1122.89 (15)
C6ii—C6—H6122.6C12—N2—Ag1118.63 (15)
C5—C6—H6122.6C4—N3—C1110.35 (17)
N1—C7—C8122.6 (2)C4—N3—Ag1128.63 (14)
N1—C7—H11118.7C1—N3—Ag1120.98 (14)
C8—C7—H11118.7H1A—O1W—H1B105 (4)
C9—C8—C7118.7 (2)
O1—C1—C2—C3179.7 (2)C12—C11—N1—C7178.35 (19)
N3—C1—C2—C31.2 (2)C10—C11—N1—Ag1174.03 (16)
O1—C1—C2—C561.3 (3)C12—C11—N1—Ag17.3 (2)
N3—C1—C2—C5117.83 (19)N3—Ag1—N1—C79.0 (2)
C1—C2—C3—C43.7 (2)N2—Ag1—N1—C7179.1 (2)
C5—C2—C3—C4117.52 (18)Ag1i—Ag1—N1—C780.37 (18)
C1—C2—C3—C5ii124.88 (18)N3—Ag1—N1—C11164.88 (14)
C5—C2—C3—C5ii3.7 (2)N2—Ag1—N1—C117.03 (15)
C2—C3—C4—O2173.5 (2)Ag1i—Ag1—N1—C11105.71 (16)
C5ii—C3—C4—O254.5 (3)C15—C16—N2—C120.2 (3)
C2—C3—C4—N35.4 (2)C15—C16—N2—Ag1176.70 (18)
C5ii—C3—C4—N3124.47 (19)C13—C12—N2—C161.0 (3)
C1—C2—C5—C664.1 (2)C11—C12—N2—C16178.63 (19)
C3—C2—C5—C651.2 (2)C13—C12—N2—Ag1176.10 (16)
C1—C2—C5—C3ii178.93 (17)C11—C12—N2—Ag14.3 (2)
C3—C2—C5—C3ii63.66 (18)N3—Ag1—N2—C1619.6 (3)
C3ii—C5—C6—C6ii56.6 (3)N1—Ag1—N2—C16177.18 (19)
C2—C5—C6—C6ii56.7 (3)Ag1i—Ag1—N2—C16113.25 (17)
N1—C7—C8—C92.1 (4)N3—Ag1—N2—C12157.30 (17)
C7—C8—C9—C101.0 (4)N1—Ag1—N2—C125.89 (15)
C8—C9—C10—C110.6 (4)Ag1i—Ag1—N2—C1269.82 (15)
C9—C10—C11—N11.2 (3)O2—C4—N3—C1174.0 (2)
C9—C10—C11—C12177.3 (2)C3—C4—N3—C14.9 (2)
N1—C11—C12—N22.3 (3)O2—C4—N3—Ag18.5 (3)
C10—C11—C12—N2179.1 (2)C3—C4—N3—Ag1172.56 (13)
N1—C11—C12—C13177.2 (2)O1—C1—N3—C4176.8 (2)
C10—C11—C12—C131.4 (3)C2—C1—N3—C42.3 (2)
N2—C12—C13—C141.1 (3)O1—C1—N3—Ag15.4 (3)
C11—C12—C13—C14178.5 (2)C2—C1—N3—Ag1175.45 (13)
C12—C13—C14—C150.4 (4)N2—Ag1—N3—C415.3 (3)
C13—C14—C15—C160.3 (4)N1—Ag1—N3—C4174.54 (16)
C14—C15—C16—N20.4 (4)Ag1i—Ag1—N3—C4115.44 (17)
C8—C7—N1—C111.4 (4)N2—Ag1—N3—C1167.45 (16)
C8—C7—N1—Ag1175.12 (18)N1—Ag1—N3—C18.19 (19)
C10—C11—N1—C70.3 (3)Ag1i—Ag1—N3—C161.83 (16)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O20.81 (3)2.07 (2)2.839 (2)159 (3)
O1W—H1B···O2iii0.82 (3)2.13 (3)2.952 (3)175 (2)
Symmetry code: (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag2(C12H8N2O4)(C10H8N2)2]·2H2O
Mr808.34
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)22.2720 (12), 7.1013 (4), 19.6329 (11)
β (°) 108.376 (1)
V3)2946.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.24 × 0.22 × 0.21
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.712, 0.758
No. of measured, independent and
observed [I > 2σ(I)] reflections
7869, 2923, 2588
Rint0.020
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.051, 1.03
No. of reflections2923
No. of parameters214
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O20.81 (3)2.07 (2)2.839 (2)159 (3)
O1W—H1B···O2i0.82 (3)2.13 (3)2.952 (3)175 (2)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The author thanks Anshan Normal University, Liaoning, China, for supporting this work.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiao, C. Y., Chan, K. T., Chiu, P. L., Chen, C. Y. & Lee, H. M. (2008). Inorg. Chim. Acta, 361, 2973–2978.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, X.-Z., Qin, C., Guan, W., Song, S.-Y. & Zhang, H.-J. (2012). New J. Chem. 36, 877–882.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, B. (2010). Acta Cryst. E66, o1473.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568–m1569.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds