metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­{chlorido[2,3-di­methyl-N-(pyridin-2-yl­methyl­­idene)aniline-κ2N,N′]mercury(II)}

aDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran, bDepartment of Chemistry, Faculty of Science, Islamic Azad University, South Tehran Branch, Tehran, Iran, and cDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: mr_talei@azad.ac.ir

(Received 31 August 2012; accepted 12 September 2012; online 22 September 2012)

In the centrosymmetric binuclear molecule of the title complex, [Hg2Cl4(C14H14N2)2], the five-coordinated HgII ions have a distorted square-pyramidal geometry defined by two N atoms belonging to the chelating imino­pyridine ligand and three Cl atoms. The benzene and pyridine rings are oriented at a dihedral angle of 56.7 (6)°. The crystal packing is stabilized by C—H⋯Cl hydrogen bonds and ππ inter­actions between the pyridine rings [centroid–centroid distance = 3.796 (6) Å].

Related literature

For background to Schiff base compounds, see: Gibson et al. (2007[Gibson, V. C., Redshaw, C. & Solan, G. A. (2007). Chem. Rev. 107, 1745-1776.]); Gibson & Spitzmesser (2003[Gibson, V. C. & Spitzmesser, S. K. (2003). Chem. Rev. 103, 283-316.]); Ittel et al. (2000[Ittel, S. D., Johnson, L. K. & Brookhart, M. (2000). Chem. Rev. 100, 1169-1203.]). For related structures, see: Baul et al. (2004[Baul, T. S. B., Lycka, A., Butcher, R. & Smith, E. F. (2004). Polyhedron, 23, 2323-2329.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg2Cl4(C14H14N2)2]

  • Mr = 963.52

  • Monoclinic, C 2/c

  • a = 7.7989 (16) Å

  • b = 26.525 (5) Å

  • c = 15.098 (3) Å

  • β = 98.26 (3)°

  • V = 3090.9 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.29 mm−1

  • T = 298 K

  • 0.50 × 0.17 × 0.15 mm

Data collection
  • Stoe IPDS-2T diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.126, Tmax = 0.210

  • 12121 measured reflections

  • 4164 independent reflections

  • 3174 reflections with I > 2σ(I)

  • Rint = 0.118

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.206

  • S = 1.11

  • 4164 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 3.28 e Å−3

  • Δρmin = −4.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl2i 0.93 2.65 3.400 (11) 138
C4—H4⋯Cl2ii 0.93 2.67 3.552 (11) 158
C14—H14C⋯Cl1iii 0.96 2.76 3.685 (14) 162
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) [-x+1, y, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+2.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff base metal complexes have been known since the nineteenth century. Investigation on metal-organic complexes represents one of the most active areas of material science and chemical research (Gibson et al., 2007; Gibson & Spitzmesser, 2003; Ittel et al., 2000). Schiff bases form a class of compounds with azomethin group, which are usually synthesized from the condensation of primary amines and active carbonyl groups by the elimination of water molecule. We report herein the crystal structure of the title compound, a new mercury(II) complex. This complex was synthesized by the reaction of HgCl2 with 2-[(2,3-dimethylphenyl)iminomethyl]pyridine in an acetonitril solution.

In the title compound (Fig. 1), the HgII atom is five-coordinated in a distorted squar-pyramidal geometry. The Schiff base ligand coordinates to the HgII atom as a bidentate ligand through the N atoms of the imine group and pyridine ring. Also two bridging and one terminal chloride anions are present in the coordination environment of the HgII atom (Baul et al., 2004). The benzene and pyridine rings are oriented at a dihedral angle of 56.7 (6)°. Crystal packing is stabilized by intermolecular C—H···Cl hydrogen bonds (Fig. 2, Table 1) and ππ interactions between the pyridine rings [centroid–centroid distance = 3.796 (6) Å].

Related literature top

For background to Schiff base compounds, see: Gibson et al. (2007); Gibson & Spitzmesser (2003); Ittel et al. (2000). For related structures, see: Baul et al. (2004).

Experimental top

For the preparation of the title compound, a solution of 2-[(2,3-dimethylphenyl)iminomethyl]pyridine (0.210 g, 1.00 mmol) in acetonitril (10 ml) was added slowly to a solution of HgCl2 (0.271 g, 1.00 mmol) in acetonitril (10 ml) and the resulting yellow solution was stirred for 45 min at room temperature. Then the yellow precipitate was filtered and dissolved in acetonitril and left to evaporate slowly at -18°C. After a few days, yellow crystals of the title compound were isolated (yield: 0.272 g, 56.5%; m.p. 489 K).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). The highest residual electron density was found at 0.85 Å from Hg1 atom and the deepest hole at 0.92 Å from Hg1 atom.

Structure description top

Schiff base metal complexes have been known since the nineteenth century. Investigation on metal-organic complexes represents one of the most active areas of material science and chemical research (Gibson et al., 2007; Gibson & Spitzmesser, 2003; Ittel et al., 2000). Schiff bases form a class of compounds with azomethin group, which are usually synthesized from the condensation of primary amines and active carbonyl groups by the elimination of water molecule. We report herein the crystal structure of the title compound, a new mercury(II) complex. This complex was synthesized by the reaction of HgCl2 with 2-[(2,3-dimethylphenyl)iminomethyl]pyridine in an acetonitril solution.

In the title compound (Fig. 1), the HgII atom is five-coordinated in a distorted squar-pyramidal geometry. The Schiff base ligand coordinates to the HgII atom as a bidentate ligand through the N atoms of the imine group and pyridine ring. Also two bridging and one terminal chloride anions are present in the coordination environment of the HgII atom (Baul et al., 2004). The benzene and pyridine rings are oriented at a dihedral angle of 56.7 (6)°. Crystal packing is stabilized by intermolecular C—H···Cl hydrogen bonds (Fig. 2, Table 1) and ππ interactions between the pyridine rings [centroid–centroid distance = 3.796 (6) Å].

For background to Schiff base compounds, see: Gibson et al. (2007); Gibson & Spitzmesser (2003); Ittel et al. (2000). For related structures, see: Baul et al. (2004).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (a) 1/2-x, 3/2-y, 2-z.]
[Figure 2] Fig. 2. Packing diagram of the title compound. Hydrogen bonds are shown as blue dashed lines.
Di-µ-chlorido-bis{chlorido[2,3-dimethyl-N-(pyridin-2- ylmethylidene)aniline-κ2N,N']mercury(II)} top
Crystal data top
[Hg2Cl4(C14H14N2)2]F(000) = 1808.0
Mr = 963.52Dx = 2.071 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4164 reflections
a = 7.7989 (16) Åθ = 2.1–29.2°
b = 26.525 (5) ŵ = 10.29 mm1
c = 15.098 (3) ÅT = 298 K
β = 98.26 (3)°Column, yellow
V = 3090.9 (11) Å30.50 × 0.17 × 0.15 mm
Z = 4
Data collection top
Stoe IPDS-2T
diffractometer
4164 independent reflections
Radiation source: fine-focus sealed tube3174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.118
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 2.1°
ω scansh = 1010
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 2002)
k = 3635
Tmin = 0.126, Tmax = 0.210l = 2016
12121 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083H-atom parameters constrained
wR(F2) = 0.206 w = 1/[σ2(Fo2) + (0.1219P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
4164 reflectionsΔρmax = 3.28 e Å3
175 parametersΔρmin = 4.88 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0012 (2)
Crystal data top
[Hg2Cl4(C14H14N2)2]V = 3090.9 (11) Å3
Mr = 963.52Z = 4
Monoclinic, C2/cMo Kα radiation
a = 7.7989 (16) ŵ = 10.29 mm1
b = 26.525 (5) ÅT = 298 K
c = 15.098 (3) Å0.50 × 0.17 × 0.15 mm
β = 98.26 (3)°
Data collection top
Stoe IPDS-2T
diffractometer
4164 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 2002)
3174 reflections with I > 2σ(I)
Tmin = 0.126, Tmax = 0.210Rint = 0.118
12121 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0830 restraints
wR(F2) = 0.206H-atom parameters constrained
S = 1.11Δρmax = 3.28 e Å3
4164 reflectionsΔρmin = 4.88 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.43296 (5)0.703848 (14)0.98975 (3)0.0525 (2)
Cl20.1308 (3)0.71572 (10)0.88978 (17)0.0524 (5)
Cl10.3754 (4)0.64201 (11)1.0936 (2)0.0663 (7)
N10.5738 (9)0.7612 (3)0.9145 (5)0.0452 (16)
N20.6082 (10)0.6579 (3)0.8873 (6)0.0528 (19)
C50.6666 (12)0.7441 (4)0.8523 (6)0.050 (2)
C60.6903 (13)0.6896 (4)0.8436 (7)0.052 (2)
H60.76560.67760.80600.062*
C80.5112 (14)0.5709 (4)0.8740 (7)0.057 (2)
C70.6450 (14)0.6053 (4)0.8836 (7)0.058 (2)
C10.5528 (15)0.8102 (4)0.9243 (7)0.055 (2)
H10.48870.82140.96780.066*
C130.3227 (15)0.5888 (5)0.8577 (9)0.065 (3)
H13A0.26960.58280.91020.098*
H13B0.26080.57060.80810.098*
H13C0.31940.62420.84450.098*
C120.8192 (15)0.5889 (5)0.8986 (8)0.065 (3)
H120.90930.61220.90650.078*
C90.5443 (17)0.5190 (5)0.8768 (9)0.068 (3)
C20.6211 (14)0.8450 (4)0.8733 (8)0.060 (2)
H20.60300.87920.88140.072*
C40.7403 (13)0.7770 (5)0.7992 (7)0.056 (2)
H40.80510.76490.75660.068*
C30.7178 (14)0.8285 (5)0.8093 (8)0.062 (3)
H30.76690.85150.77360.074*
C140.406 (2)0.4806 (5)0.8639 (13)0.092 (5)
H14A0.32880.48760.80980.138*
H14B0.34180.48140.91380.138*
H14C0.45610.44780.85990.138*
C110.8530 (17)0.5385 (5)0.9014 (10)0.080 (4)
H110.96720.52730.91010.096*
C100.7187 (19)0.5035 (6)0.8912 (10)0.082 (4)
H100.74460.46930.89400.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0468 (3)0.0595 (3)0.0521 (3)0.00288 (15)0.00989 (16)0.00296 (15)
Cl20.0445 (11)0.0637 (13)0.0479 (11)0.0022 (10)0.0026 (9)0.0021 (10)
Cl10.0688 (17)0.0655 (14)0.0649 (16)0.0064 (12)0.0102 (13)0.0160 (12)
N10.034 (3)0.064 (4)0.037 (3)0.003 (3)0.006 (3)0.009 (3)
N20.041 (4)0.063 (5)0.055 (4)0.007 (4)0.008 (3)0.013 (4)
C50.039 (4)0.067 (6)0.043 (4)0.002 (4)0.002 (4)0.000 (4)
C60.039 (4)0.075 (6)0.041 (4)0.002 (4)0.002 (4)0.006 (4)
C80.055 (5)0.062 (5)0.051 (5)0.009 (5)0.003 (4)0.004 (4)
C70.047 (5)0.073 (6)0.053 (5)0.009 (5)0.003 (4)0.009 (5)
C10.056 (6)0.058 (5)0.053 (5)0.004 (4)0.012 (5)0.003 (4)
C130.054 (6)0.070 (6)0.068 (7)0.001 (5)0.002 (5)0.001 (5)
C120.052 (6)0.079 (7)0.063 (6)0.020 (5)0.006 (5)0.010 (5)
C90.066 (7)0.071 (7)0.065 (7)0.001 (6)0.002 (5)0.001 (5)
C20.050 (5)0.062 (6)0.064 (6)0.004 (5)0.001 (5)0.004 (5)
C40.041 (5)0.084 (7)0.043 (5)0.006 (5)0.004 (4)0.002 (5)
C30.052 (6)0.079 (7)0.053 (5)0.013 (5)0.003 (5)0.009 (5)
C140.089 (10)0.059 (7)0.125 (14)0.008 (6)0.001 (9)0.001 (8)
C110.057 (7)0.083 (8)0.096 (10)0.019 (6)0.005 (7)0.004 (7)
C100.083 (9)0.074 (8)0.084 (9)0.022 (7)0.003 (7)0.005 (7)
Geometric parameters (Å, º) top
Hg1—N12.273 (8)C13—H13A0.9600
Hg1—Cl12.356 (3)C13—H13B0.9600
Hg1—N22.521 (8)C13—H13C0.9600
Hg1—Cl22.628 (3)C12—C111.363 (18)
Hg1—Cl2i2.893 (3)C12—H120.9300
N1—C11.322 (14)C9—C101.407 (18)
N1—C51.345 (13)C9—C141.479 (19)
N2—C61.295 (14)C2—C31.379 (17)
N2—C71.426 (14)C2—H20.9300
C5—C41.365 (16)C4—C31.390 (18)
C5—C61.466 (15)C4—H40.9300
C6—H60.9300C3—H30.9300
C8—C71.379 (16)C14—H14A0.9600
C8—C91.400 (17)C14—H14B0.9600
C8—C131.531 (15)C14—H14C0.9600
C7—C121.413 (14)C11—C101.39 (2)
C1—C21.358 (16)C11—H110.9300
C1—H10.9300C10—H100.9300
N1—Hg1—Cl1161.8 (2)C8—C13—H13B109.5
N1—Hg1—N270.9 (3)H13A—C13—H13B109.5
Cl1—Hg1—N2104.1 (2)C8—C13—H13C109.5
N1—Hg1—Cl295.2 (2)H13A—C13—H13C109.5
Cl1—Hg1—Cl2102.99 (10)H13B—C13—H13C109.5
N2—Hg1—Cl2103.1 (2)C11—C12—C7119.0 (13)
N1—Hg1—Cl2i87.7 (2)C11—C12—H12120.5
Cl1—Hg1—Cl2i91.64 (10)C7—C12—H12120.5
N2—Hg1—Cl2i154.2 (2)C8—C9—C10117.5 (12)
Cl2—Hg1—Cl2i92.97 (7)C8—C9—C14123.0 (11)
Hg1—Cl2—Hg1i87.03 (7)C10—C9—C14119.4 (13)
C1—N1—C5119.7 (9)C1—C2—C3118.8 (11)
C1—N1—Hg1121.8 (7)C1—C2—H2120.6
C5—N1—Hg1118.2 (7)C3—C2—H2120.6
C6—N2—C7119.9 (9)C5—C4—C3119.6 (10)
C6—N2—Hg1110.4 (7)C5—C4—H4120.2
C7—N2—Hg1128.9 (7)C3—C4—H4120.2
N1—C5—C4120.7 (10)C2—C3—C4118.5 (10)
N1—C5—C6118.7 (9)C2—C3—H3120.7
C4—C5—C6120.6 (10)C4—C3—H3120.7
N2—C6—C5121.2 (9)C9—C14—H14A109.5
N2—C6—H6119.4C9—C14—H14B109.5
C5—C6—H6119.4H14A—C14—H14B109.5
C7—C8—C9121.0 (11)C9—C14—H14C109.5
C7—C8—C13120.4 (10)H14A—C14—H14C109.5
C9—C8—C13118.6 (11)H14B—C14—H14C109.5
C8—C7—C12120.6 (11)C12—C11—C10120.8 (12)
C8—C7—N2119.9 (9)C12—C11—H11119.6
C12—C7—N2119.3 (10)C10—C11—H11119.6
N1—C1—C2122.7 (11)C11—C10—C9121.2 (12)
N1—C1—H1118.6C11—C10—H10119.4
C2—C1—H1118.6C9—C10—H10119.4
C8—C13—H13A109.5
N1—Hg1—Cl2—Hg1i88.0 (2)C4—C5—C6—N2173.4 (9)
Cl1—Hg1—Cl2—Hg1i92.38 (10)C9—C8—C7—C121.6 (18)
N2—Hg1—Cl2—Hg1i159.6 (2)C13—C8—C7—C12180.0 (11)
Cl2i—Hg1—Cl2—Hg1i0.0C9—C8—C7—N2175.2 (11)
Cl1—Hg1—N1—C1105.9 (9)C13—C8—C7—N26.4 (16)
N2—Hg1—N1—C1177.2 (8)C6—N2—C7—C8137.2 (11)
Cl2—Hg1—N1—C175.2 (7)Hg1—N2—C7—C854.0 (13)
Cl2i—Hg1—N1—C117.6 (7)C6—N2—C7—C1249.1 (15)
Cl1—Hg1—N1—C580.8 (9)Hg1—N2—C7—C12119.7 (10)
N2—Hg1—N1—C53.9 (6)C5—N1—C1—C20.3 (15)
Cl2—Hg1—N1—C598.1 (6)Hg1—N1—C1—C2172.9 (8)
Cl2i—Hg1—N1—C5169.1 (6)C8—C7—C12—C111.6 (19)
N1—Hg1—N2—C60.1 (6)N2—C7—C12—C11175.3 (12)
Cl1—Hg1—N2—C6161.6 (6)C7—C8—C9—C101.1 (18)
Cl2—Hg1—N2—C691.2 (6)C13—C8—C9—C10179.5 (11)
Cl2i—Hg1—N2—C635.8 (10)C7—C8—C9—C14177.9 (13)
N1—Hg1—N2—C7169.7 (9)C13—C8—C9—C140.5 (19)
Cl1—Hg1—N2—C78.0 (8)N1—C1—C2—C30.7 (17)
Cl2—Hg1—N2—C799.2 (8)N1—C5—C4—C30.5 (14)
Cl2i—Hg1—N2—C7133.8 (7)C6—C5—C4—C3179.3 (8)
C1—N1—C5—C40.3 (14)C1—C2—C3—C40.5 (16)
Hg1—N1—C5—C4173.8 (7)C5—C4—C3—C20.1 (15)
C1—N1—C5—C6179.1 (8)C7—C12—C11—C101 (2)
Hg1—N1—C5—C67.5 (11)C12—C11—C10—C91 (2)
C7—N2—C6—C5174.6 (8)C8—C9—C10—C111 (2)
Hg1—N2—C6—C53.9 (11)C14—C9—C10—C11178.3 (15)
N1—C5—C6—N27.8 (13)
Symmetry code: (i) x+1/2, y+3/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl2i0.932.653.400 (11)138
C4—H4···Cl2ii0.932.673.552 (11)158
C14—H14C···Cl1iii0.962.763.685 (14)162
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x+1, y, z+3/2; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Hg2Cl4(C14H14N2)2]
Mr963.52
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)7.7989 (16), 26.525 (5), 15.098 (3)
β (°) 98.26 (3)
V3)3090.9 (11)
Z4
Radiation typeMo Kα
µ (mm1)10.29
Crystal size (mm)0.50 × 0.17 × 0.15
Data collection
DiffractometerStoe IPDS2T
Absorption correctionNumerical
(X-SHAPE and X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.126, 0.210
No. of measured, independent and
observed [I > 2σ(I)] reflections
12121, 4164, 3174
Rint0.118
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.206, 1.11
No. of reflections4164
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.28, 4.88

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl2i0.932.653.400 (11)138
C4—H4···Cl2ii0.932.673.552 (11)158
C14—H14C···Cl1iii0.962.763.685 (14)162
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x+1, y, z+3/2; (iii) x+1, y+1, z+2.
 

Acknowledgements

The authors acknowledge the Islamic Azad University, Karaj Branch, for financial support.

References

First citationBaul, T. S. B., Lycka, A., Butcher, R. & Smith, E. F. (2004). Polyhedron, 23, 2323–2329.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGibson, V. C., Redshaw, C. & Solan, G. A. (2007). Chem. Rev. 107, 1745–1776.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGibson, V. C. & Spitzmesser, S. K. (2003). Chem. Rev. 103, 283–316.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIttel, S. D., Johnson, L. K. & Brookhart, M. (2000). Chem. Rev. 100, 1169–1203.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds