metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1189-m1190

Tri­chlorido(4,4′-di­methyl-2,2′-bi­pyridine-κ2N,N′)(methanol-κO)indium(III) methanol monosolvate

aDepartment of Chemistry, Islamic Azad University, Omidieh Branch, Omidieh, Iran
*Correspondence e-mail: sadif_shirvan1@yahoo.com

(Received 2 August 2012; accepted 11 August 2012; online 23 August 2012)

In the title compound, [InCl3(C12H12N2)(CH3OH)]·CH3OH, the InIII atom is six-coordinated in a distorted octa­hedral geometry by two N atoms from a chelating 4,4′-dimethyl-2,2′-bipyridine ligand, one O atom from a methanol mol­ecule and three Cl atoms. In the crystal, inter­molecular O—H⋯O and O—H⋯Cl hydrogen bonds link the complex and solvent methanol mol­ecules. Intra­molecular C—H⋯Cl hydrogen bonds are also present in the complex.

Related literature

For related structures, see: Abedi et al. (2012[Abedi, A., Safari, N., Amani, V. & Khavasi, H. R. (2012). J. Coord. Chem. 65, 325-338.]); Ahmadi et al. (2008[Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306-m1307.]); Alizadeh et al. (2010[Alizadeh, R., Mohammadi Eshlaghi, P. & Amani, V. (2010). Acta Cryst. E66, m996.]); Amani et al. (2009[Amani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939-1950.]); Dong et al. (1987[Dong, N., Hang, N.-D., Dong, Z.-C. & Hu, S.-Z. (1987). Jiegou Huaxue (Chin. J. Struct. Chem.), 6, 145-149.]); Hojjat Kashani et al. (2008[Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905-m906.]); Ilyuhin & Malyarick (1994[Ilyuhin, A. B. & Malyarick, M. A. (1994). Kristallografiya, 39, 439-443.]); Kalateh, Ahmadi et al. (2008[Kalateh, K., Ahmadi, R., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1353-m1354.]); Kalateh, Ebadi et al. (2008[Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397-m1398.]); Kalateh et al. (2010[Kalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512.]); Malyarick et al. (1992[Malyarick, M. A., Petrosyants, S. P. & Ilyuhin, A. B. (1992). Polyhedron, 11, 1067-1073.]); Shirvan & Haydari Dezfuli (2011[Shirvan, S. A. & Haydari Dezfuli, S. (2011). Acta Cryst. E67, m1866-m1867.], 2012[Shirvan, S. A. & Haydari Dezfuli, S. (2012). Acta Cryst. E68, m1006-m1007.]); Yousefi et al. (2008[Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.]).

[Scheme 1]

Experimental

Crystal data
  • [InCl3(C12H12N2)(CH4O)]·CH4O

  • Mr = 469.49

  • Monoclinic, P 21 /c

  • a = 12.0318 (6) Å

  • b = 10.3751 (4) Å

  • c = 15.2626 (7) Å

  • β = 91.981 (4)°

  • V = 1904.11 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.621, Tmax = 0.699

  • 11231 measured reflections

  • 3747 independent reflections

  • 3200 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 1.05

  • 3747 reflections

  • 205 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.43 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O2 0.85 (6) 1.83 (6) 2.648 (6) 161 (6)
O2—H2B⋯Cl3i 0.82 2.77 3.462 (5) 143
C1—H1⋯Cl2 0.93 2.76 3.408 (4) 128
C2—H2⋯Cl1ii 0.93 2.77 3.681 (4) 167
C12—H12⋯Cl3 0.93 2.78 3.411 (4) 126
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.].

Supporting information


Comment top

Several In(III) complexes with a formula [In(L1)Cl3(L2)] (L1 = an N,N'-chelating ligand, L2 = DMSO, H2O, MeOH and EtOH), such as [In(bipy)Cl3(H2O)], (II), [In(bipy)Cl3(EtOH)], (III), [In(bipy)Cl3(H2O)].H2O, (IV) (Malyarick et al., 1992), [In(phen)Cl3(DMSO)], (V) (Dong et al., 1987), [In(phen)Cl3(H2O)], (VI), [In(phen)Cl3(EtOH)].EtOH, (VII) (Ilyuhin & Malyarick, 1994), [In(4,4'-dmbipy)Cl3(DMSO)], (IIX) (Ahmadi et al., 2008), [In(5,5'-dmbipy)Cl3(MeOH)], (IX) (Kalateh, Ahmadi et al., 2008), [In(4bt)Cl3(MeOH)], (X), and [In(4bt)Cl3(DMSO)], (XI) (Abedi et al., 2012) (bipy = 2,2'-bipyridine, phen = 1,10-phenanthroline, DMSO = dimethyl sulfoxide, 4,4'-dmbipy = 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmbipy = 5,5'-dimethyl-2,2'-bipyridine, 4bt = 4,4'-bithiazole), have been synthesized and characterized by single-crystal X-ray diffraction methods. 4,4'-Dmbipy is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of [Hg(4,4'-dmbipy)I2], (XII) (Yousefi et al., 2008), [Hg(4,4'-dmbipy)Br2], (XIII) (Kalateh, Ebadi et al., 2008), [Fe(4,4'-dmbipy)Cl3(DMSO)], (XIV) (Amani et al., 2009), [Pt(4,4'-dmbipy)Cl4], (XV) (Hojjat Kashani et al., 2008), [Cd(4,4'-dmbipy)I2(DMSO)], (XVI) (Kalateh et al., 2010), [Zn(4,4'-dmbipy)Br2], (XVII) (Alizadeh et al., 2010), [Zn(4,4'-dmbipy)(H2O)(NO3)2], (XVIII) (Shirvan & Haydari Dezfuli, 2011), and [Cd(4,4'-dmbipy)Br2(DMSO)], (XIX) (Shirvan & Haydari Dezfuli, 2012). We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound (Fig. 1), the InIII atom is six-coordinated in a distorted octahedral geometry by two N atoms from a chelating 4,4'-dmbipy ligand, one O atom from a methanol molecule and three Cl atoms. There is also one solvent methanol molecule in the asymmetric unit. The In—Cl, In—N and In—O bond lengths and angles are within normal range. In the crystal, intermolecular O—H···O and O—H···Cl hydrogen bonds link the complex and solvent methanol molecules (Fig. 2, Table 1). Intramolecular C—H···Cl hydrogen bonds are present in the complex.

Related literature top

For related structures, see: Abedi et al. (2012); Ahmadi et al. (2008); Alizadeh et al. (2010); Amani et al. (2009); Dong et al. (1987); Hojjat Kashani et al. (2008); Ilyuhin & Malyarick (1994); Kalateh, Ahmadi et al. (2008); Kalateh, Ebadi et al. (2008); Kalateh et al. (2010); Malyarick et al. (1992); Shirvan & Haydari Dezfuli (2011, 2012); Yousefi et al. (2008).

Experimental top

For the preparation of the title compound, a solution of 4,4'-dmbipy (0.30 g, 1.65 mmol) in methanol (20 ml) was added to a solution of InCl3.4H2O (0.48 g, 1.65 mmol) in methanol (20 ml). The resulting colorless solution was stirred for 10 min at room temperature and then it was left to evaporate slowly at room temperature. After six days, colorless block crystals of the title compound were isolated (yield: 0.62 g, 80.0%).

Refinement top

H atoms bonded to C atoms and O2 atom were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (CH3) and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for hydroxyl)Ueq(C, O). H atom bonded to O1 atom was located from a difference Fourier map and refined isotropically. The highest residual electron density was found at 0.86 Å from In1 atom and the deepest hole at 0.91 Å from In1 atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Trichlorido(4,4'-dimethyl-2,2'-bipyridine-κ2N,N')(methanol- κO)indium(III) methanol monosolvate top
Crystal data top
[InCl3(C12H12N2)(CH4O)]·CH4OF(000) = 936
Mr = 469.49Dx = 1.638 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11231 reflections
a = 12.0318 (6) Åθ = 1.7–26.0°
b = 10.3751 (4) ŵ = 1.67 mm1
c = 15.2626 (7) ÅT = 298 K
β = 91.981 (4)°Block, colorless
V = 1904.11 (15) Å30.30 × 0.25 × 0.23 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3747 independent reflections
Radiation source: fine-focus sealed tube3200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.621, Tmax = 0.699k = 1212
11231 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.029P]
where P = (Fo2 + 2Fc2)/3
3747 reflections(Δ/σ)max = 0.009
205 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
[InCl3(C12H12N2)(CH4O)]·CH4OV = 1904.11 (15) Å3
Mr = 469.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0318 (6) ŵ = 1.67 mm1
b = 10.3751 (4) ÅT = 298 K
c = 15.2626 (7) Å0.30 × 0.25 × 0.23 mm
β = 91.981 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
3747 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3200 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 0.699Rint = 0.064
11231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.43 e Å3
3747 reflectionsΔρmin = 0.76 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In10.760984 (19)0.07129 (2)0.223229 (16)0.03869 (11)
C10.5479 (3)0.0469 (4)0.3156 (3)0.0454 (9)
H10.57270.12220.28970.054*
C20.4532 (3)0.0517 (4)0.3638 (3)0.0484 (9)
H20.41580.12930.37050.058*
C30.4143 (3)0.0591 (4)0.4021 (3)0.0459 (9)
C40.3089 (4)0.0606 (5)0.4526 (3)0.0641 (12)
H4A0.25640.11850.42480.077*
H4B0.32530.08890.51150.077*
H4C0.27790.02460.45370.077*
C50.4753 (3)0.1719 (4)0.3912 (2)0.0440 (8)
H50.45170.24850.41620.053*
C60.5711 (3)0.1703 (3)0.3433 (2)0.0350 (7)
C70.6408 (3)0.2864 (3)0.3311 (2)0.0344 (7)
C80.6183 (3)0.4038 (3)0.3701 (2)0.0407 (8)
H80.55640.41250.40440.049*
C90.6881 (3)0.5084 (3)0.3578 (2)0.0456 (8)
C100.6694 (4)0.6323 (4)0.4057 (3)0.0684 (13)
H10A0.67410.61690.46780.082*
H10B0.59710.66560.38970.082*
H10C0.72520.69380.39040.082*
C110.7760 (3)0.4922 (4)0.3035 (3)0.0518 (9)
H110.82330.56080.29250.062*
C120.7935 (3)0.3735 (4)0.2654 (3)0.0494 (9)
H120.85250.36420.22810.059*
C130.9285 (5)0.0471 (6)0.3806 (5)0.094 (2)
H13A0.99160.02960.34570.113*
H13B0.90180.13270.36840.113*
H13C0.95000.04040.44160.113*
C140.9904 (6)0.3073 (8)0.4407 (5)0.121 (3)
H14A0.97290.39650.43120.182*
H14B1.01820.27090.38800.182*
H14C1.04590.29980.48710.182*
N10.6052 (2)0.0611 (3)0.3047 (2)0.0380 (6)
N20.7290 (2)0.2717 (3)0.28000 (18)0.0381 (6)
O10.8436 (3)0.0429 (3)0.3603 (2)0.0572 (8)
H1B0.844 (5)0.109 (6)0.393 (4)0.083 (18)*
O20.8937 (4)0.2405 (5)0.4641 (3)0.1071 (15)
H2B0.87160.26940.51040.161*
Cl10.65354 (13)0.12400 (14)0.08916 (7)0.0776 (4)
Cl20.76643 (9)0.15957 (10)0.20171 (9)0.0639 (3)
Cl30.94145 (10)0.13256 (13)0.17180 (10)0.0777 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.04584 (16)0.03230 (16)0.03823 (16)0.00351 (10)0.00593 (10)0.00244 (10)
C10.055 (2)0.0314 (18)0.050 (2)0.0074 (15)0.0027 (17)0.0017 (15)
C20.053 (2)0.043 (2)0.049 (2)0.0145 (16)0.0001 (17)0.0010 (17)
C30.0499 (19)0.050 (2)0.0383 (19)0.0082 (16)0.0037 (15)0.0011 (16)
C40.065 (3)0.066 (3)0.063 (3)0.015 (2)0.019 (2)0.001 (2)
C50.0528 (19)0.0374 (19)0.0423 (19)0.0021 (15)0.0097 (15)0.0041 (16)
C60.0446 (16)0.0293 (16)0.0310 (16)0.0010 (13)0.0014 (13)0.0003 (13)
C70.0441 (16)0.0294 (16)0.0296 (15)0.0001 (13)0.0005 (12)0.0001 (13)
C80.0510 (18)0.0347 (18)0.0368 (18)0.0004 (15)0.0062 (15)0.0010 (15)
C90.062 (2)0.0288 (18)0.046 (2)0.0016 (16)0.0024 (17)0.0004 (16)
C100.094 (3)0.034 (2)0.079 (3)0.007 (2)0.010 (3)0.010 (2)
C110.055 (2)0.033 (2)0.068 (3)0.0083 (17)0.0037 (19)0.0033 (19)
C120.0480 (19)0.040 (2)0.061 (2)0.0027 (16)0.0139 (18)0.0007 (18)
C130.095 (4)0.090 (4)0.095 (4)0.046 (3)0.033 (3)0.009 (3)
C140.106 (5)0.128 (7)0.128 (6)0.039 (5)0.015 (4)0.048 (5)
N10.0435 (14)0.0322 (15)0.0381 (15)0.0012 (11)0.0018 (12)0.0026 (12)
N20.0452 (15)0.0282 (15)0.0411 (15)0.0007 (11)0.0057 (12)0.0019 (12)
O10.0683 (18)0.0521 (17)0.0504 (17)0.0180 (14)0.0104 (14)0.0038 (14)
O20.144 (4)0.099 (3)0.078 (3)0.015 (3)0.008 (3)0.027 (3)
Cl10.1109 (9)0.0774 (8)0.0431 (6)0.0324 (7)0.0173 (6)0.0093 (6)
Cl20.0772 (7)0.0346 (5)0.0808 (7)0.0035 (4)0.0164 (6)0.0134 (5)
Cl30.0636 (6)0.0626 (7)0.1095 (10)0.0022 (5)0.0415 (7)0.0084 (7)
Geometric parameters (Å, º) top
In1—Cl12.4443 (13)C9—C101.500 (5)
In1—Cl22.4188 (11)C9—C111.376 (5)
In1—Cl32.4192 (13)C11—C121.381 (6)
In1—O12.304 (3)C1—H10.9300
In1—N12.287 (3)C2—H20.9300
In1—N22.290 (3)C4—H4B0.9600
O1—C131.411 (7)C4—H4C0.9600
O1—H1B0.85 (6)C4—H4A0.9600
O2—C141.411 (9)C5—H50.9300
O2—H2B0.8200C8—H80.9300
N1—C11.329 (5)C10—H10A0.9600
N1—C61.348 (4)C10—H10C0.9600
N2—C71.347 (4)C10—H10B0.9600
N2—C121.334 (5)C11—H110.9300
C1—C21.378 (6)C12—H120.9300
C2—C31.379 (6)C13—H13C0.9600
C3—C41.507 (6)C13—H13A0.9600
C3—C51.394 (6)C13—H13B0.9600
C5—C61.386 (5)C14—H14A0.9600
C6—C71.483 (5)C14—H14B0.9600
C7—C81.387 (4)C14—H14C0.9600
C8—C91.389 (5)
Cl1···Cl23.6456 (18)N2···H1B2.75 (6)
Cl1···Cl33.646 (2)C1···C7ii3.579 (5)
Cl1···N13.423 (3)C1···C8ii3.450 (5)
Cl1···N23.387 (3)C2···C7ii3.566 (5)
Cl1···C8i3.368 (3)C2···C12ii3.591 (6)
Cl2···O13.313 (3)C5···Cl2iii3.639 (4)
Cl2···N13.419 (3)C7···C1iii3.579 (5)
Cl2···C133.500 (7)C7···C2iii3.566 (5)
Cl2···C5ii3.639 (4)C8···C1iii3.450 (5)
Cl2···Cl13.6456 (18)C8···Cl1v3.368 (3)
Cl2···C13.408 (4)C12···C2iii3.591 (6)
Cl3···Cl13.646 (2)C12···C143.578 (9)
Cl3···C123.411 (4)C13···O23.277 (8)
Cl3···O13.281 (3)C14···Cl3v3.650 (8)
Cl3···N23.411 (3)C14···C123.578 (9)
Cl3···C14i3.650 (8)C1···H4Bvi3.0300
Cl3···O2i3.462 (5)C5···H82.6900
Cl1···H10Ai3.1300C8···H52.6800
Cl1···H2Bi3.1300C14···H1B2.79 (6)
Cl1···H8i3.0400H1···Cl22.7600
Cl1···H2iii2.7700H1B···O21.83 (6)
Cl1···H10Bii3.0700H1B···C142.79 (6)
Cl2···H14Biv3.0600H1B···H2B2.4600
Cl2···H13B2.9900H2···H4C2.3900
Cl2···H4Aii3.0100H2···Cl1ii2.7700
Cl2···H12.7600H2B···H1B2.4600
Cl3···H14Aiv3.1100H2B···Cl1v3.1300
Cl3···H122.7800H2B···Cl3v2.7700
Cl3···H11iv2.9600H4A···Cl2iii3.0100
Cl3···H2Bi2.7700H4B···C1vi3.0300
O1···Cl23.313 (3)H4C···H22.3900
O1···Cl33.281 (3)H5···H82.1300
O1···O22.648 (6)H5···C82.6800
O1···N12.969 (4)H8···H52.1300
O1···N22.987 (4)H8···C52.6900
O2···Cl3v3.462 (5)H8···Cl1v3.0400
O2···O12.648 (6)H10A···Cl1v3.1300
O2···C133.277 (8)H10B···Cl1iii3.0700
O2···H1B1.83 (6)H10C···H112.3800
N1···Cl23.419 (3)H11···Cl3vii2.9600
N1···O12.969 (4)H11···H10C2.3800
N1···N22.678 (4)H12···H13Avii2.4800
N1···Cl13.423 (3)H12···Cl32.7800
N1···C72.408 (4)H13A···H12iv2.4800
N2···N12.678 (4)H13B···Cl22.9900
N2···Cl13.387 (3)H13C···H13Cviii2.2800
N2···Cl33.411 (3)H14A···Cl3vii3.1100
N2···C62.403 (4)H14B···Cl2vii3.0600
N2···O12.987 (4)
Cl1—In1—Cl297.12 (5)C10—C9—C11122.0 (3)
Cl1—In1—Cl397.14 (5)C9—C11—C12119.6 (4)
Cl1—In1—O1171.08 (9)N2—C12—C11122.5 (4)
Cl1—In1—N192.63 (8)C2—C1—H1119.00
Cl1—In1—N291.30 (8)N1—C1—H1119.00
Cl2—In1—Cl3100.80 (4)C3—C2—H2120.00
Cl2—In1—O189.07 (8)C1—C2—H2120.00
Cl2—In1—N193.13 (8)C3—C4—H4A109.00
Cl2—In1—N2162.96 (8)C3—C4—H4C110.00
Cl3—In1—O187.96 (9)H4A—C4—H4B109.00
Cl3—In1—N1161.82 (8)C3—C4—H4B109.00
Cl3—In1—N292.79 (7)H4B—C4—H4C109.00
O1—In1—N180.58 (11)H4A—C4—H4C110.00
O1—In1—N281.11 (10)C3—C5—H5120.00
N1—In1—N271.62 (10)C6—C5—H5120.00
In1—O1—C13124.8 (4)C9—C8—H8120.00
C13—O1—H1B115 (4)C7—C8—H8120.00
In1—O1—H1B115 (4)C9—C10—H10A109.00
C14—O2—H2B109.00C9—C10—H10C109.00
In1—N1—C1123.1 (3)H10A—C10—H10B109.00
In1—N1—C6117.8 (2)H10A—C10—H10C109.00
C1—N1—C6119.2 (3)H10B—C10—H10C110.00
C7—N2—C12118.8 (3)C9—C10—H10B110.00
In1—N2—C7117.9 (2)C12—C11—H11120.00
In1—N2—C12123.3 (2)C9—C11—H11120.00
N1—C1—C2122.6 (4)N2—C12—H12119.00
C1—C2—C3119.7 (4)C11—C12—H12119.00
C2—C3—C4122.0 (4)O1—C13—H13B110.00
C4—C3—C5120.5 (4)O1—C13—H13C110.00
C2—C3—C5117.5 (4)O1—C13—H13A109.00
C3—C5—C6120.2 (4)H13A—C13—H13C109.00
N1—C6—C7116.5 (3)H13B—C13—H13C109.00
N1—C6—C5120.8 (3)H13A—C13—H13B109.00
C5—C6—C7122.7 (3)O2—C14—H14A109.00
N2—C7—C6116.2 (3)O2—C14—H14B109.00
N2—C7—C8121.2 (3)O2—C14—H14C109.00
C6—C7—C8122.7 (3)H14A—C14—H14B110.00
C7—C8—C9120.0 (3)H14A—C14—H14C109.00
C8—C9—C11117.8 (3)H14B—C14—H14C109.00
C8—C9—C10120.2 (3)
Cl2—In1—O1—C1338.9 (4)C1—N1—C6—C7178.0 (3)
Cl3—In1—O1—C1362.0 (4)In1—N2—C12—C11176.9 (3)
N1—In1—O1—C13132.2 (4)C7—N2—C12—C112.7 (6)
N2—In1—O1—C13155.1 (4)In1—N2—C7—C8177.9 (2)
Cl1—In1—N1—C190.5 (3)In1—N2—C7—C61.6 (4)
Cl1—In1—N1—C689.8 (2)C12—N2—C7—C6178.8 (3)
Cl2—In1—N1—C16.8 (3)C12—N2—C7—C81.7 (5)
Cl2—In1—N1—C6173.0 (2)N1—C1—C2—C30.6 (7)
O1—In1—N1—C195.4 (3)C1—C2—C3—C51.2 (6)
O1—In1—N1—C684.4 (2)C1—C2—C3—C4177.6 (4)
N2—In1—N1—C1179.0 (3)C2—C3—C5—C60.1 (6)
N2—In1—N1—C60.7 (2)C4—C3—C5—C6178.8 (4)
Cl1—In1—N2—C792.9 (2)C3—C5—C6—C7178.6 (3)
Cl1—In1—N2—C1287.6 (3)C3—C5—C6—N11.8 (5)
Cl3—In1—N2—C7169.9 (2)C5—C6—C7—N2177.4 (3)
Cl3—In1—N2—C129.7 (3)C5—C6—C7—C83.1 (5)
O1—In1—N2—C782.4 (2)N1—C6—C7—N22.3 (4)
O1—In1—N2—C1297.1 (3)N1—C6—C7—C8177.2 (3)
N1—In1—N2—C70.5 (2)C6—C7—C8—C9178.6 (3)
N1—In1—N2—C12179.9 (3)N2—C7—C8—C90.9 (5)
In1—N1—C1—C2179.1 (3)C7—C8—C9—C112.6 (5)
C6—N1—C1—C21.2 (6)C7—C8—C9—C10175.0 (3)
In1—N1—C6—C5177.9 (2)C8—C9—C11—C121.7 (6)
C1—N1—C6—C52.4 (5)C10—C9—C11—C12175.9 (4)
In1—N1—C6—C71.8 (4)C9—C11—C12—N21.0 (6)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+1, y, z+1; (vii) x+2, y+1/2, z+1/2; (viii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O20.85 (6)1.83 (6)2.648 (6)161 (6)
O2—H2B···Cl3v0.822.773.462 (5)143
C1—H1···Cl20.932.763.408 (4)128
C2—H2···Cl1ii0.932.773.681 (4)167
C12—H12···Cl30.932.783.411 (4)126
Symmetry codes: (ii) x+1, y1/2, z+1/2; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[InCl3(C12H12N2)(CH4O)]·CH4O
Mr469.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.0318 (6), 10.3751 (4), 15.2626 (7)
β (°) 91.981 (4)
V3)1904.11 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.30 × 0.25 × 0.23
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.621, 0.699
No. of measured, independent and
observed [I > 2σ(I)] reflections
11231, 3747, 3200
Rint0.064
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.05
No. of reflections3747
No. of parameters205
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.43, 0.76

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O20.85 (6)1.83 (6)2.648 (6)161 (6)
O2—H2B···Cl3i0.822.773.462 (5)143
C1—H1···Cl20.932.763.408 (4)128
C2—H2···Cl1ii0.932.773.681 (4)167
C12—H12···Cl30.932.783.411 (4)126
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

References

First citationAbedi, A., Safari, N., Amani, V. & Khavasi, H. R. (2012). J. Coord. Chem. 65, 325–338.  Web of Science CSD CrossRef CAS Google Scholar
First citationAhmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306–m1307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlizadeh, R., Mohammadi Eshlaghi, P. & Amani, V. (2010). Acta Cryst. E66, m996.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939–1950.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, N., Hang, N.-D., Dong, Z.-C. & Hu, S.-Z. (1987). Jiegou Huaxue (Chin. J. Struct. Chem.), 6, 145–149.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIlyuhin, A. B. & Malyarick, M. A. (1994). Kristallografiya, 39, 439–443.  Google Scholar
First citationKalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalateh, K., Ahmadi, R., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1353–m1354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMalyarick, M. A., Petrosyants, S. P. & Ilyuhin, A. B. (1992). Polyhedron, 11, 1067–1073.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirvan, S. A. & Haydari Dezfuli, S. (2011). Acta Cryst. E67, m1866–m1867.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShirvan, S. A. & Haydari Dezfuli, S. (2012). Acta Cryst. E68, m1006–m1007.  CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1189-m1190
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds