metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m371-m372

Bis[μ-N-(3-meth­­oxy-2-oxido­benzyl­­idene-1:2κ2O2:O2)-L-isoleucinato-2κ2N,O]bis­­(1,10-phenanthroline-1κ2N,N′)dinickel(II) methanol tetra­solvate trihydrate

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lilianzhi1963@yahoo.com.cn

(Received 18 February 2012; accepted 29 February 2012; online 3 March 2012)

In the title complex, [Ni2(C14H17NO4)2(C12H8N2)2]·4CH3OH·3H2O, the two NiII ions are bridged by two Schiff base anions, leading to a dinuclear complex. One NiII ion is six-coordinated by four O atoms and two N atoms of two tridentate Schiff base ligands derived from the condensation of L-isoleucine and o-vanillin. The other NiII ion is six-coordinated by four N atoms of two 1,10-phenanthroline ligands and two O atoms of the Schiff base ligands. In the crystal, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds lead to a three-dimensional structure. Intra­molecular C—H⋯O hydrogen bonds are also present. One of the methyl groups of the L-isoleucinate moieties is disordered over two sets of sites with an occupancy ratio of 0.687 (19):0.313 (19) and two methanol mol­ecules are half-occupied.

Related literature

For transition metal compounds containing Schiff base ligands, see: Bernal et al. (1999[Bernal, M., García-Vázquez, J. A., Romero, J., Gómez, C., Durán, M. L., Sousa, A., Sousa-Pedrares, A., Rose, D. J., Maresca, K. P. & Zubieta, J. (1999). Inorg. Chim. Acta, 295, 39-47.]); Chattopadhyay et al. (2009[Chattopadhyay, S., Chakraborty, P., Drew, M. G. B. & Ghosh, A. (2009). Inorg. Chim. Acta, 362, 502-508.]); Chohan et al. (1998[Chohan, Z. H., Praveen, M. & Ghaffer, A. (1998). Synth. React. Inorg. Met. Org. Chem. 28, 1673-1687.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C14H17NO4)2(C12H8N2)2]·4CH4O·3H2O

  • Mr = 1186.62

  • Orthorhombic, P 21 21 21

  • a = 14.1827 (15) Å

  • b = 14.3876 (16) Å

  • c = 28.787 (2) Å

  • V = 5874.1 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 298 K

  • 0.50 × 0.36 × 0.35 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.718, Tmax = 0.789

  • 24389 measured reflections

  • 10254 independent reflections

  • 7528 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.157

  • S = 1.04

  • 10254 reflections

  • 740 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4525 Friedel pairs

  • Flack parameter: 0.015 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9⋯O1 0.82 1.88 2.693 (7) 169
O10—H10⋯O5 0.82 1.93 2.659 (7) 147
O11—H11⋯O10i 0.82 1.81 2.632 (10) 178
O12—H12⋯O15ii 0.82 1.97 2.75 (2) 158
O13—H13⋯O15 0.82 2.12 2.94 (3) 179
O14—H14F⋯O6 0.85 1.91 2.760 (8) 180
O14—H14G⋯O2i 0.85 2.05 2.901 (8) 180
O15—H15C⋯O9 0.85 1.85 2.690 (10) 169
O15—H15D⋯O16 0.85 2.06 2.901 (14) 171
O16—H16C⋯O11 0.85 1.97 2.817 (13) 178
O16—H16D⋯O14 0.85 1.95 2.798 (11) 178
C18—H18B⋯O6 0.97 2.52 3.192 (10) 126
C29—H29⋯O4 0.93 2.60 3.348 (8) 138
C30—H30⋯O12iii 0.93 2.57 3.405 (15) 149
C53—H53C⋯O6 0.96 2.53 3.460 (12) 164
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y, z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal compounds containing Schiff base ligands have been of great interest for many years (Bernal et al., 1999; Chattopadhyay et al., 2009). It has been reported that amino acid Schiff base and their first row transition metal complexes exhibit diverse biological activities (Chohan et al., 1998). Herein, we report the synthesis and crystal structure of a binuclear nickel(II) complex with two tridentate Schiff base ligands derived from the condensation of L-isoleucine and o-vanillin and with two 1,10-phenanthroline coligands.

As shown in Fig. 1, both NiII ions are six-coordinated and reside in a distorted octahedral coordination environment. Ni2 atom is coordinated by two O atoms from carboxylate groups, two N atoms from imine groups and two O atoms from hydroxyl groups of the tridentate Schiff base ligands, forming a distorted octahedral coordination polyhedron. The axial bond angle, O7—Ni2—O5 [169.54 (15)°], is deviated from the ideal value 180°. N1, N2, O1 and O3 atoms are located in the equatorial plane, and Ni2 lies 0.032 (2) Å above the plane. Ni1 atom is also six-coordinated by four N atoms from two 1,10-phenanthroline ligands and two O atoms from hydroxyl groups of the tridentate Schiff base ligands, forming an octahedral geometry. The axial bond angle N6—Ni1—N3 is 169.6 (2)°, and Ni1 atom deviates 0.004 (2) Å from the equatorial plane formed by N4, N5, O3 and O7 atoms. In the crystal, intermolecular O—H···O and C—H···O hydrogen bonds lead to a three-dimensional structure (Table 1). Intramolecular C—H···O hydrogen bonds are present.

Related literature top

For transition metal compounds containing Schiff base ligands, see: Bernal et al. (1999); Chattopadhyay et al. (2009); Chohan et al. (1998).

Experimental top

L-Isoleucine (1 mmol, 131.2 mg) and potassium hydroxide (1 mmol, 56.1 mg) were dissolved in hot methanol (10 ml) and added successively to a methanol solution of o-vanillin (1 mmol, 152.2 mg). The mixture was then stirred at 323 K for 2 h. Subsequently, an aqueous solution (2 ml) of nickel(II) chloride hexahydrate (1 mmol, 237.7 mg) was added dropwise and stirred for 2 h. A methanol solution (5 ml) of phenanthroline (1 mmol, 198.2 mg) was added dropwise and stirred for 4 h. The solution was held at room temperature for ten days, whereupon green blocky-shaped crystals suitable for X-ray diffraction were obtained.

Refinement top

Difference Fourier maps revealed that one of the methyl group of the Schiff base ligands is disordered over two sites. The subsequent refinement of their occupancies gave values of 0.687 (19) and 0.313 (19). H atoms of the water molecules were found in difference Fourier maps and refined as riding atoms, with O—H = 0.85 Å and with Uiso(H) = 1.2Ueq(O). Other H atoms were placed in geometrically calculated positions and refined as riding atoms, with C—H = 0.93 (aromatic), 0.96 (CH3), 0.97 (CH2) and 0.98 (CH) Å and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for methyl and hydroxyl)Ueq(C,O).

Structure description top

Transition metal compounds containing Schiff base ligands have been of great interest for many years (Bernal et al., 1999; Chattopadhyay et al., 2009). It has been reported that amino acid Schiff base and their first row transition metal complexes exhibit diverse biological activities (Chohan et al., 1998). Herein, we report the synthesis and crystal structure of a binuclear nickel(II) complex with two tridentate Schiff base ligands derived from the condensation of L-isoleucine and o-vanillin and with two 1,10-phenanthroline coligands.

As shown in Fig. 1, both NiII ions are six-coordinated and reside in a distorted octahedral coordination environment. Ni2 atom is coordinated by two O atoms from carboxylate groups, two N atoms from imine groups and two O atoms from hydroxyl groups of the tridentate Schiff base ligands, forming a distorted octahedral coordination polyhedron. The axial bond angle, O7—Ni2—O5 [169.54 (15)°], is deviated from the ideal value 180°. N1, N2, O1 and O3 atoms are located in the equatorial plane, and Ni2 lies 0.032 (2) Å above the plane. Ni1 atom is also six-coordinated by four N atoms from two 1,10-phenanthroline ligands and two O atoms from hydroxyl groups of the tridentate Schiff base ligands, forming an octahedral geometry. The axial bond angle N6—Ni1—N3 is 169.6 (2)°, and Ni1 atom deviates 0.004 (2) Å from the equatorial plane formed by N4, N5, O3 and O7 atoms. In the crystal, intermolecular O—H···O and C—H···O hydrogen bonds lead to a three-dimensional structure (Table 1). Intramolecular C—H···O hydrogen bonds are present.

For transition metal compounds containing Schiff base ligands, see: Bernal et al. (1999); Chattopadhyay et al. (2009); Chohan et al. (1998).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, drawn with 30% probability displacement ellipsoids. Solvent molecules were omited for clarity.
Bis[µ-N-(3-methoxy-2-oxidobenzylidene-1:2κ2O2:O2)- L-isoleucinato-2κ2N,O]bis(1,10-phenanthroline- 1κ2N,N')dinickel(II) methanol tetrasolvate trihydrate top
Crystal data top
[Ni2(C14H17NO4)2(C12H8N2)2]·4CH4O·3H2OF(000) = 2504
Mr = 1186.62Dx = 1.342 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6251 reflections
a = 14.1827 (15) Åθ = 2.1–22.3°
b = 14.3876 (16) ŵ = 0.71 mm1
c = 28.787 (2) ÅT = 298 K
V = 5874.1 (10) Å3Block, green
Z = 40.50 × 0.36 × 0.35 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
10254 independent reflections
Radiation source: fine-focus sealed tube7528 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.718, Tmax = 0.789k = 1714
24389 measured reflectionsl = 3427
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0843P)2 + 0.2853P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
10254 reflectionsΔρmax = 0.48 e Å3
740 parametersΔρmin = 0.38 e Å3
0 restraintsAbsolute structure: Flack (1983), 4525 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (16)
Crystal data top
[Ni2(C14H17NO4)2(C12H8N2)2]·4CH4O·3H2OV = 5874.1 (10) Å3
Mr = 1186.62Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 14.1827 (15) ŵ = 0.71 mm1
b = 14.3876 (16) ÅT = 298 K
c = 28.787 (2) Å0.50 × 0.36 × 0.35 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
10254 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
7528 reflections with I > 2σ(I)
Tmin = 0.718, Tmax = 0.789Rint = 0.058
24389 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.157Δρmax = 0.48 e Å3
S = 1.04Δρmin = 0.38 e Å3
10254 reflectionsAbsolute structure: Flack (1983), 4525 Friedel pairs
740 parametersAbsolute structure parameter: 0.015 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.03559 (5)0.36746 (5)0.08944 (2)0.03316 (19)
Ni20.22288 (5)0.42714 (5)0.14628 (2)0.03314 (19)
N10.2127 (4)0.3271 (3)0.19494 (15)0.0365 (11)
N20.2567 (3)0.5352 (3)0.10536 (15)0.0359 (11)
N30.0359 (4)0.4823 (3)0.04619 (15)0.0400 (11)
N40.0179 (3)0.3031 (3)0.02394 (16)0.0372 (11)
N50.1105 (3)0.3774 (4)0.10477 (16)0.0416 (12)
N60.0125 (4)0.2470 (3)0.12675 (16)0.0420 (12)
O10.3623 (3)0.3827 (3)0.14860 (14)0.0430 (9)
O20.4656 (4)0.3041 (3)0.19199 (18)0.0682 (14)
O30.0782 (3)0.4453 (2)0.14790 (12)0.0325 (8)
O40.0674 (3)0.5554 (3)0.16137 (14)0.0465 (10)
O50.2534 (3)0.5235 (3)0.19671 (13)0.0448 (11)
O60.3347 (4)0.6532 (3)0.20795 (16)0.0693 (14)
O70.1841 (2)0.3514 (2)0.08909 (12)0.0311 (8)
O80.2101 (3)0.2010 (3)0.03901 (14)0.0474 (11)
O90.5038 (4)0.4988 (4)0.1256 (2)0.0844 (17)
H90.46000.46210.12890.127*
O100.3015 (6)0.4606 (4)0.2803 (2)0.105 (2)
H100.29310.45870.25210.157*
O110.7727 (7)0.8424 (6)0.1603 (3)0.154 (3)
H110.74940.87980.17840.232*
O120.4841 (12)0.6276 (10)0.9727 (7)0.141 (7)0.50
H120.48710.62751.00110.212*0.50
O130.742 (2)0.6327 (17)0.0328 (9)0.223 (11)0.50
H130.68730.63250.04160.335*0.50
O140.4813 (5)0.7793 (4)0.2115 (2)0.109 (2)
H14F0.43610.74050.21030.130*
H14G0.49690.78660.23980.130*
O150.5444 (8)0.6326 (6)0.0635 (3)0.192 (5)
H15C0.53030.58590.08020.231*
H15D0.56110.67660.08150.231*
O160.5971 (7)0.7692 (6)0.1330 (3)0.167 (4)
H16C0.65050.79110.14060.200*
H16D0.56110.77130.15650.200*
C10.3831 (5)0.3261 (4)0.1805 (2)0.0439 (15)
C20.3014 (4)0.2786 (4)0.2056 (2)0.0439 (16)
H20.31260.28260.23920.053*
C30.2970 (5)0.1742 (4)0.1918 (2)0.0502 (16)
H30.23250.15320.19800.060*
C40.3624 (6)0.1133 (4)0.2210 (3)0.067 (2)
H4A0.42680.13420.21660.080*
H4B0.34670.12150.25350.080*
C50.3568 (7)0.0099 (5)0.2091 (3)0.088 (3)
H5A0.29230.01020.21040.133*
H5B0.39350.02500.23110.133*
H5C0.38120.00020.17840.133*
C60.3138 (5)0.1610 (5)0.1398 (2)0.064 (2)
H6A0.37970.16790.13310.095*
H6B0.27870.20690.12280.095*
H6C0.29340.10010.13070.095*
C70.1443 (5)0.3209 (4)0.2234 (2)0.0413 (15)
H70.15230.28000.24800.050*
C80.0538 (4)0.3716 (4)0.22165 (19)0.0390 (13)
C90.0301 (4)0.4348 (3)0.18687 (17)0.0305 (11)
C100.0507 (4)0.4890 (4)0.19425 (18)0.0364 (13)
C110.1120 (5)0.4717 (4)0.2304 (2)0.0464 (15)
H11A0.16750.50570.23300.056*
C120.0907 (5)0.4033 (4)0.2629 (2)0.0530 (18)
H12A0.13270.38980.28670.064*
C130.0077 (5)0.3562 (4)0.2594 (2)0.0469 (16)
H13A0.00860.31320.28220.056*
C140.1357 (6)0.6238 (5)0.1692 (3)0.074 (2)
H14A0.19620.59490.17310.111*
H14B0.13780.66530.14310.111*
H14C0.12000.65800.19680.111*
C150.2928 (5)0.5965 (4)0.1823 (2)0.0474 (16)
C160.2873 (5)0.6193 (4)0.13048 (19)0.0444 (14)
H160.35040.63670.11960.053*
C170.2195 (6)0.7028 (4)0.1225 (2)0.0573 (18)
H170.19820.70030.09020.069*
C180.2680 (7)0.7962 (5)0.1298 (3)0.081 (3)
H18A0.21960.84390.13030.097*0.687 (19)
H18B0.29710.79550.16030.097*0.687 (19)
H18C0.25800.81340.16200.097*0.313 (19)
H18D0.33490.78390.12660.097*0.313 (19)
C190.3402 (11)0.8245 (9)0.0959 (5)0.104 (6)0.687 (19)
H19A0.31140.83300.06600.156*0.687 (19)
H19B0.38770.77710.09380.156*0.687 (19)
H19C0.36870.88170.10570.156*0.687 (19)
C19'0.248 (2)0.8805 (19)0.1030 (11)0.104 (13)0.313 (19)
H19D0.28060.93220.11660.156*0.313 (19)
H19E0.18120.89240.10340.156*0.313 (19)
H19F0.26840.87220.07150.156*0.313 (19)
C200.1311 (5)0.6957 (5)0.1540 (3)0.069 (2)
H20A0.14900.70570.18580.104*
H20B0.10350.63510.15080.104*
H20C0.08600.74200.14490.104*
C210.2769 (5)0.5277 (4)0.06221 (19)0.0400 (14)
H210.30220.58020.04800.048*
C220.2648 (4)0.4470 (4)0.03308 (19)0.0396 (14)
C230.2283 (4)0.3625 (4)0.04890 (17)0.0325 (12)
C240.2382 (4)0.2849 (4)0.0198 (2)0.0387 (14)
C250.2713 (5)0.2932 (4)0.0254 (2)0.0504 (16)
H250.27480.24120.04450.061*
C260.2984 (5)0.3781 (5)0.0415 (2)0.0559 (18)
H260.31830.38390.07220.067*
C270.2972 (5)0.4540 (4)0.0139 (2)0.0494 (16)
H270.31750.51100.02550.059*
C280.2374 (6)0.1167 (4)0.0173 (3)0.076 (2)
H28A0.20510.11050.01180.114*
H28B0.22140.06530.03710.114*
H28C0.30430.11730.01200.114*
C290.0400 (5)0.5701 (4)0.0581 (2)0.0498 (15)
H290.03940.58490.08950.060*
C300.0453 (5)0.6436 (5)0.0254 (3)0.0638 (19)
H300.04690.70520.03510.077*
C310.0478 (6)0.6215 (6)0.0201 (3)0.071 (2)
H310.05290.66860.04200.085*
C320.0427 (5)0.5284 (5)0.0350 (2)0.0522 (17)
C330.0360 (4)0.4603 (4)0.00005 (19)0.0407 (14)
C340.0267 (4)0.3665 (4)0.01187 (18)0.0397 (13)
C350.0277 (5)0.3383 (5)0.0591 (2)0.0480 (16)
C360.0147 (5)0.2456 (5)0.0686 (2)0.0577 (19)
H360.01260.22510.09920.069*
C370.0050 (5)0.1833 (5)0.0328 (2)0.0546 (18)
H370.00310.12030.03900.066*
C380.0071 (4)0.2149 (5)0.0128 (2)0.0501 (17)
H380.00070.17170.03660.060*
C390.0459 (6)0.4992 (6)0.0822 (2)0.064 (2)
H390.05350.54310.10560.077*
C400.0381 (5)0.4105 (6)0.0930 (2)0.065 (2)
H400.03940.39400.12420.078*
C410.1719 (5)0.4423 (5)0.0922 (2)0.0553 (17)
H410.15300.48990.07240.066*
C420.2679 (5)0.4399 (6)0.1089 (3)0.068 (2)
H420.31120.48430.09920.082*
C430.2943 (5)0.3719 (6)0.1392 (3)0.067 (2)
H430.35600.37110.15020.080*
C440.2335 (5)0.3057 (5)0.1537 (2)0.0571 (18)
C450.1407 (4)0.3098 (4)0.1348 (2)0.0425 (15)
C460.0745 (5)0.2405 (4)0.1462 (2)0.0456 (15)
C470.1021 (6)0.1689 (5)0.1767 (2)0.0577 (19)
C480.0346 (7)0.1003 (5)0.1856 (3)0.070 (2)
H480.04780.05280.20650.084*
C490.0508 (6)0.1030 (5)0.1637 (3)0.067 (2)
H490.09410.05530.16810.081*
C500.0728 (5)0.1782 (4)0.1345 (2)0.0552 (18)
H500.13150.17980.12010.066*
C510.2548 (6)0.2340 (6)0.1859 (3)0.072 (2)
H510.31400.23270.19980.086*
C520.1928 (6)0.1693 (6)0.1967 (3)0.072 (2)
H520.20920.12310.21780.086*
C530.5307 (8)0.5333 (7)0.1689 (4)0.116 (4)
H53A0.57630.58200.16480.175*
H53B0.55810.48410.18700.175*
H53C0.47650.55750.18480.175*
C540.3889 (8)0.4915 (8)0.2891 (3)0.109 (4)
H54A0.39120.55760.28440.163*
H54B0.43280.46180.26850.163*
H54C0.40530.47750.32070.163*
C550.8155 (14)0.8919 (10)0.1217 (6)0.223 (9)
H55A0.86510.93120.13310.334*
H55B0.76860.92930.10660.334*
H55C0.84100.84800.10000.334*
C560.5384 (17)0.5598 (15)0.9558 (8)0.116 (7)0.50
H56A0.60280.58030.95500.174*0.50
H56B0.51810.54420.92500.174*0.50
H56C0.53340.50600.97540.174*0.50
C570.781 (2)0.7202 (19)0.0402 (11)0.168 (12)0.50
H57A0.73980.75610.05950.252*0.50
H57B0.78920.75110.01090.252*0.50
H57C0.84130.71380.05520.252*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0339 (4)0.0375 (4)0.0281 (3)0.0004 (3)0.0014 (3)0.0002 (3)
Ni20.0324 (4)0.0388 (4)0.0283 (4)0.0000 (3)0.0011 (3)0.0012 (3)
N10.038 (3)0.038 (3)0.034 (3)0.000 (2)0.000 (3)0.0031 (19)
N20.037 (3)0.041 (2)0.030 (2)0.001 (2)0.003 (2)0.0023 (19)
N30.039 (3)0.047 (3)0.034 (3)0.001 (2)0.001 (2)0.002 (2)
N40.029 (3)0.046 (3)0.036 (3)0.000 (2)0.001 (2)0.005 (2)
N50.031 (3)0.054 (3)0.039 (3)0.000 (3)0.003 (2)0.012 (2)
N60.042 (3)0.046 (3)0.038 (3)0.007 (2)0.000 (2)0.004 (2)
O10.034 (2)0.053 (2)0.042 (2)0.0045 (19)0.001 (2)0.010 (2)
O20.039 (3)0.083 (3)0.083 (4)0.005 (3)0.006 (3)0.028 (3)
O30.034 (2)0.039 (2)0.0240 (18)0.0015 (16)0.0018 (18)0.0017 (16)
O40.044 (3)0.048 (2)0.047 (2)0.0108 (19)0.002 (2)0.0060 (19)
O50.054 (3)0.046 (2)0.034 (2)0.011 (2)0.000 (2)0.0010 (17)
O60.080 (4)0.069 (3)0.058 (3)0.020 (3)0.007 (3)0.019 (2)
O70.026 (2)0.042 (2)0.0248 (18)0.0016 (16)0.0024 (17)0.0029 (17)
O80.054 (3)0.044 (2)0.044 (2)0.002 (2)0.010 (2)0.0108 (19)
O90.060 (4)0.090 (4)0.103 (5)0.010 (3)0.003 (3)0.002 (3)
O100.141 (7)0.105 (5)0.069 (4)0.003 (5)0.018 (4)0.007 (3)
O110.174 (9)0.157 (7)0.133 (7)0.041 (7)0.002 (6)0.007 (6)
O120.152 (15)0.081 (9)0.191 (17)0.046 (10)0.047 (13)0.043 (10)
O130.22 (3)0.21 (2)0.24 (3)0.03 (2)0.02 (2)0.10 (2)
O140.111 (6)0.112 (5)0.102 (5)0.039 (4)0.020 (4)0.004 (4)
O150.207 (11)0.162 (8)0.207 (10)0.013 (8)0.037 (9)0.072 (8)
O160.199 (10)0.158 (8)0.144 (8)0.043 (7)0.024 (7)0.007 (6)
C10.040 (4)0.048 (3)0.044 (4)0.005 (3)0.003 (3)0.002 (3)
C20.042 (4)0.047 (4)0.043 (4)0.010 (3)0.001 (3)0.008 (3)
C30.047 (4)0.050 (4)0.055 (4)0.005 (3)0.001 (3)0.001 (3)
C40.066 (5)0.056 (4)0.078 (5)0.015 (4)0.003 (4)0.015 (4)
C50.087 (7)0.056 (5)0.123 (8)0.022 (4)0.000 (6)0.008 (5)
C60.063 (5)0.066 (5)0.062 (5)0.009 (4)0.002 (4)0.010 (4)
C70.050 (4)0.039 (3)0.035 (3)0.005 (3)0.001 (3)0.006 (3)
C80.044 (4)0.039 (3)0.034 (3)0.004 (3)0.008 (3)0.002 (3)
C90.031 (3)0.035 (3)0.025 (3)0.000 (3)0.002 (2)0.003 (2)
C100.038 (4)0.038 (3)0.033 (3)0.001 (3)0.002 (3)0.008 (2)
C110.044 (4)0.052 (4)0.043 (3)0.001 (3)0.007 (3)0.006 (3)
C120.049 (4)0.064 (4)0.046 (4)0.003 (3)0.020 (3)0.001 (3)
C130.053 (4)0.051 (4)0.037 (3)0.000 (3)0.013 (3)0.004 (3)
C140.081 (6)0.061 (5)0.080 (5)0.026 (4)0.002 (4)0.009 (4)
C150.050 (4)0.047 (4)0.045 (4)0.002 (3)0.005 (3)0.011 (3)
C160.047 (4)0.045 (3)0.041 (3)0.002 (3)0.000 (3)0.003 (3)
C170.067 (5)0.048 (4)0.056 (4)0.004 (4)0.009 (4)0.008 (3)
C180.099 (7)0.049 (4)0.095 (6)0.003 (4)0.009 (6)0.003 (4)
C190.105 (13)0.076 (9)0.130 (13)0.012 (8)0.023 (10)0.002 (9)
C19'0.11 (3)0.08 (2)0.13 (3)0.012 (18)0.02 (2)0.002 (18)
C200.066 (5)0.074 (5)0.068 (5)0.015 (4)0.000 (4)0.019 (4)
C210.042 (4)0.041 (3)0.037 (3)0.001 (3)0.001 (3)0.007 (2)
C220.040 (4)0.048 (3)0.031 (3)0.002 (3)0.005 (3)0.002 (2)
C230.027 (3)0.043 (3)0.028 (3)0.006 (3)0.002 (2)0.001 (2)
C240.033 (3)0.045 (3)0.038 (3)0.002 (3)0.000 (3)0.003 (3)
C250.053 (4)0.058 (4)0.040 (3)0.009 (3)0.003 (3)0.013 (3)
C260.063 (5)0.072 (5)0.032 (3)0.014 (4)0.013 (3)0.005 (3)
C270.051 (4)0.056 (4)0.041 (3)0.002 (3)0.006 (3)0.000 (3)
C280.099 (7)0.051 (4)0.078 (5)0.014 (4)0.011 (5)0.023 (4)
C290.054 (4)0.049 (4)0.047 (4)0.001 (4)0.006 (3)0.001 (3)
C300.070 (5)0.053 (4)0.068 (5)0.001 (4)0.017 (4)0.009 (4)
C310.074 (6)0.079 (5)0.059 (5)0.011 (5)0.010 (4)0.025 (4)
C320.050 (4)0.066 (4)0.040 (3)0.005 (4)0.006 (3)0.012 (3)
C330.029 (3)0.058 (4)0.035 (3)0.003 (3)0.000 (3)0.009 (3)
C340.031 (3)0.057 (4)0.030 (3)0.002 (3)0.000 (3)0.002 (3)
C350.037 (4)0.074 (5)0.033 (3)0.002 (3)0.004 (3)0.003 (3)
C360.049 (4)0.083 (5)0.042 (4)0.012 (4)0.003 (3)0.013 (4)
C370.052 (4)0.059 (4)0.052 (4)0.000 (3)0.003 (3)0.023 (3)
C380.043 (4)0.053 (4)0.055 (4)0.002 (3)0.002 (3)0.009 (3)
C390.067 (5)0.082 (5)0.044 (4)0.005 (4)0.005 (4)0.016 (4)
C400.062 (5)0.101 (6)0.031 (3)0.003 (4)0.005 (4)0.005 (4)
C410.049 (4)0.068 (4)0.049 (4)0.005 (4)0.007 (3)0.017 (3)
C420.045 (4)0.084 (5)0.076 (5)0.007 (4)0.011 (4)0.029 (4)
C430.043 (4)0.085 (5)0.073 (5)0.012 (4)0.011 (4)0.018 (4)
C440.043 (4)0.068 (4)0.060 (4)0.008 (4)0.005 (4)0.017 (3)
C450.037 (4)0.054 (4)0.036 (3)0.011 (3)0.000 (3)0.011 (3)
C460.048 (4)0.053 (4)0.036 (3)0.014 (3)0.004 (3)0.007 (3)
C470.065 (5)0.061 (4)0.047 (4)0.022 (4)0.002 (4)0.002 (3)
C480.081 (6)0.065 (5)0.062 (5)0.024 (5)0.001 (5)0.017 (3)
C490.076 (6)0.056 (4)0.071 (5)0.010 (4)0.012 (4)0.020 (3)
C500.057 (4)0.052 (4)0.056 (4)0.000 (3)0.004 (3)0.008 (3)
C510.054 (5)0.088 (6)0.073 (5)0.028 (5)0.025 (4)0.008 (4)
C520.075 (6)0.078 (5)0.061 (5)0.028 (5)0.014 (5)0.006 (4)
C530.094 (8)0.120 (8)0.136 (10)0.010 (7)0.022 (8)0.031 (7)
C540.117 (10)0.112 (8)0.097 (8)0.003 (7)0.037 (7)0.005 (6)
C550.25 (2)0.207 (18)0.207 (18)0.056 (16)0.059 (16)0.063 (14)
C560.108 (18)0.102 (16)0.139 (19)0.002 (15)0.013 (16)0.027 (14)
C570.18 (3)0.15 (2)0.17 (3)0.00 (2)0.03 (2)0.05 (2)
Geometric parameters (Å, º) top
Ni1—N62.065 (5)C18—C19'1.47 (3)
Ni1—N32.069 (5)C18—C191.472 (16)
Ni1—O32.110 (3)C18—H18A0.9700
Ni1—N42.115 (5)C18—H18B0.9700
Ni1—O72.119 (4)C18—H18C0.9699
Ni1—N52.123 (5)C18—H18D0.9701
Ni2—N22.009 (4)C19—H19A0.9600
Ni2—N12.014 (4)C19—H19B0.9600
Ni2—O72.049 (3)C19—H19C0.9600
Ni2—O52.053 (4)C19'—H19D0.9600
Ni2—O32.069 (4)C19'—H19E0.9600
Ni2—O12.080 (4)C19'—H19F0.9600
N1—C71.271 (7)C20—H20A0.9600
N1—C21.471 (7)C20—H20B0.9600
N2—C211.279 (7)C20—H20C0.9600
N2—C161.475 (7)C21—C221.443 (8)
N3—C291.310 (7)C21—H210.9300
N3—C331.365 (7)C22—C231.397 (8)
N4—C381.318 (7)C22—C271.432 (8)
N4—C341.382 (7)C23—C241.403 (7)
N5—C411.328 (8)C24—C251.388 (8)
N5—C451.370 (8)C25—C261.362 (9)
N6—C501.327 (8)C25—H250.9300
N6—C461.359 (8)C26—C271.350 (8)
O1—C11.263 (7)C26—H260.9300
O2—C11.257 (7)C27—H270.9300
O3—C91.322 (6)C28—H28A0.9600
O4—C101.365 (7)C28—H28B0.9600
O4—C141.400 (8)C28—H28C0.9600
O5—C151.260 (7)C29—C301.416 (9)
O6—C151.250 (7)C29—H290.9300
O7—C231.326 (6)C30—C311.349 (10)
O8—C241.386 (7)C30—H300.9300
O8—C281.418 (7)C31—C321.408 (10)
O9—C531.396 (11)C31—H310.9300
O9—H90.8200C32—C331.409 (8)
O10—C541.341 (12)C32—C391.424 (9)
O10—H100.8200C33—C341.399 (8)
O11—C551.452 (14)C34—C351.419 (8)
O11—H110.8200C35—C361.373 (9)
O12—C561.33 (2)C35—C401.434 (9)
O12—H120.8200C36—C371.373 (10)
O13—C571.39 (3)C36—H360.9300
O13—H130.8200C37—C381.389 (9)
O14—H14F0.8499C37—H370.9300
O14—H14G0.8502C38—H380.9300
O15—H15C0.8499C39—C401.318 (10)
O15—H15D0.8500C39—H390.9300
O16—H16C0.8501C40—H400.9300
O16—H16D0.8499C41—C421.444 (10)
C1—C21.527 (9)C41—H410.9300
C2—C31.555 (8)C42—C431.361 (11)
C2—H20.9800C42—H420.9300
C3—C61.528 (9)C43—C441.351 (10)
C3—C41.529 (9)C43—H430.9300
C3—H30.9800C44—C511.421 (10)
C4—C51.528 (10)C44—C451.424 (9)
C4—H4A0.9700C45—C461.409 (9)
C4—H4B0.9700C46—C471.408 (9)
C5—H5A0.9600C47—C481.399 (11)
C5—H5B0.9600C47—C521.410 (11)
C5—H5C0.9600C48—C491.365 (11)
C6—H6A0.9600C48—H480.9300
C6—H6B0.9600C49—C501.406 (9)
C6—H6C0.9600C49—H490.9300
C7—C81.477 (8)C50—H500.9300
C7—H70.9300C51—C521.317 (11)
C8—C91.394 (7)C51—H510.9300
C8—C131.411 (8)C52—H520.9300
C9—C101.402 (8)C53—H53A0.9600
C10—C111.379 (8)C53—H53B0.9600
C11—C121.391 (9)C53—H53C0.9600
C11—H11A0.9300C54—H54A0.9600
C12—C131.362 (9)C54—H54B0.9600
C12—H12A0.9300C54—H54C0.9600
C13—H13A0.9300C55—H55A0.9600
C14—H14A0.9600C55—H55B0.9600
C14—H14B0.9600C55—H55C0.9600
C14—H14C0.9600C56—H56A0.9600
C15—C161.531 (8)C56—H56B0.9600
C16—C171.555 (9)C56—H56C0.9600
C16—H160.9800C57—H57A0.9600
C17—C181.524 (9)C57—H57B0.9600
C17—C201.551 (10)C57—H57C0.9600
C17—H170.9800
N6—Ni1—N3169.6 (2)C19—C18—H18D46.1
N6—Ni1—O394.35 (16)C17—C18—H18D105.5
N3—Ni1—O393.18 (16)H18A—C18—H18D145.3
N6—Ni1—N494.45 (18)H18B—C18—H18D70.5
N3—Ni1—N479.25 (18)H18C—C18—H18D106.2
O3—Ni1—N4167.74 (16)C18—C19—H19A109.5
N6—Ni1—O793.95 (18)H18D—C19—H19A141.9
N3—Ni1—O794.69 (17)C18—C19—H19B109.5
O3—Ni1—O777.10 (13)H18D—C19—H19B73.2
N4—Ni1—O793.78 (16)H19A—C19—H19B109.5
N6—Ni1—N578.1 (2)C18—C19—H19C109.5
N3—Ni1—N594.2 (2)H18D—C19—H19C104.7
O3—Ni1—N594.47 (16)H19A—C19—H19C109.5
N4—Ni1—N595.70 (18)H19B—C19—H19C109.5
O7—Ni1—N5168.04 (16)C18—C19'—H19D109.5
N2—Ni2—N1168.06 (19)C18—C19'—H19E109.5
N2—Ni2—O790.26 (16)H19D—C19'—H19E109.5
N1—Ni2—O799.18 (16)C18—C19'—H19F109.5
N2—Ni2—O580.89 (16)H19D—C19'—H19F109.5
N1—Ni2—O590.34 (17)H19E—C19'—H19F109.5
O7—Ni2—O5169.54 (15)C17—C20—H20A109.5
N2—Ni2—O398.77 (17)C17—C20—H20B109.5
N1—Ni2—O390.18 (17)H20A—C20—H20B109.5
O7—Ni2—O379.56 (14)C17—C20—H20C109.5
O5—Ni2—O396.19 (16)H20A—C20—H20C109.5
N2—Ni2—O191.70 (17)H20B—C20—H20C109.5
N1—Ni2—O180.01 (18)N2—C21—C22127.3 (5)
O7—Ni2—O196.76 (15)N2—C21—H21116.4
O5—Ni2—O189.11 (17)C22—C21—H21116.4
O3—Ni2—O1168.89 (15)C23—C22—C27119.2 (5)
C7—N1—C2119.0 (5)C23—C22—C21123.7 (5)
C7—N1—Ni2123.5 (4)C27—C22—C21117.0 (5)
C2—N1—Ni2115.0 (4)O7—C23—C22124.3 (5)
C21—N2—C16118.6 (5)O7—C23—C24118.2 (5)
C21—N2—Ni2123.9 (4)C22—C23—C24117.5 (5)
C16—N2—Ni2114.7 (3)O8—C24—C25123.1 (5)
C29—N3—C33118.5 (5)O8—C24—C23115.2 (5)
C29—N3—Ni1127.8 (4)C25—C24—C23121.6 (5)
C33—N3—Ni1113.6 (4)C26—C25—C24119.5 (6)
C38—N4—C34117.7 (5)C26—C25—H25120.3
C38—N4—Ni1130.7 (4)C24—C25—H25120.3
C34—N4—Ni1111.4 (3)C27—C26—C25121.4 (6)
C41—N5—C45117.8 (6)C27—C26—H26119.3
C41—N5—Ni1129.1 (5)C25—C26—H26119.3
C45—N5—Ni1112.9 (4)C26—C27—C22120.2 (6)
C50—N6—C46117.7 (5)C26—C27—H27119.9
C50—N6—Ni1127.7 (4)C22—C27—H27119.9
C46—N6—Ni1114.7 (4)O8—C28—H28A109.5
C1—O1—Ni2116.3 (4)O8—C28—H28B109.5
C9—O3—Ni2121.1 (3)H28A—C28—H28B109.5
C9—O3—Ni1117.9 (3)O8—C28—H28C109.5
Ni2—O3—Ni1101.48 (15)H28A—C28—H28C109.5
C10—O4—C14120.0 (5)H28B—C28—H28C109.5
C15—O5—Ni2115.1 (4)N3—C29—C30123.3 (6)
C23—O7—Ni2120.7 (3)N3—C29—H29118.3
C23—O7—Ni1117.5 (3)C30—C29—H29118.3
Ni2—O7—Ni1101.85 (15)C31—C30—C29118.0 (7)
C24—O8—C28119.3 (5)C31—C30—H30121.0
C53—O9—H9109.5C29—C30—H30121.0
C54—O10—H10109.5C30—C31—C32121.2 (7)
C55—O11—H11109.5C30—C31—H31119.4
C56—O12—H12109.5C32—C31—H31119.4
C57—O13—H13109.5C31—C32—C33116.6 (6)
H14F—O14—H14G108.4C31—C32—C39124.8 (6)
H15C—O15—H15D108.2C33—C32—C39118.7 (6)
H16C—O16—H16D108.3N3—C33—C34117.5 (5)
O2—C1—O1124.8 (6)N3—C33—C32122.4 (5)
O2—C1—C2118.0 (5)C34—C33—C32120.1 (5)
O1—C1—C2117.2 (5)N4—C34—C33117.5 (5)
N1—C2—C1109.7 (5)N4—C34—C35121.8 (6)
N1—C2—C3111.7 (5)C33—C34—C35120.7 (5)
C1—C2—C3109.9 (5)C36—C35—C34117.9 (6)
N1—C2—H2108.5C36—C35—C40125.6 (6)
C1—C2—H2108.5C34—C35—C40116.5 (6)
C3—C2—H2108.5C37—C36—C35119.9 (6)
C6—C3—C4111.9 (6)C37—C36—H36120.0
C6—C3—C2111.4 (5)C35—C36—H36120.0
C4—C3—C2112.9 (5)C36—C37—C38119.5 (6)
C6—C3—H3106.7C36—C37—H37120.3
C4—C3—H3106.7C38—C37—H37120.3
C2—C3—H3106.7N4—C38—C37123.3 (7)
C5—C4—C3113.8 (7)N4—C38—H38118.4
C5—C4—H4A108.8C37—C38—H38118.4
C3—C4—H4A108.8C40—C39—C32120.6 (6)
C5—C4—H4B108.8C40—C39—H39119.7
C3—C4—H4B108.8C32—C39—H39119.7
H4A—C4—H4B107.7C39—C40—C35123.3 (6)
C4—C5—H5A109.5C39—C40—H40118.3
C4—C5—H5B109.5C35—C40—H40118.3
H5A—C5—H5B109.5N5—C41—C42120.7 (7)
C4—C5—H5C109.5N5—C41—H41119.6
H5A—C5—H5C109.5C42—C41—H41119.6
H5B—C5—H5C109.5C43—C42—C41119.3 (8)
C3—C6—H6A109.5C43—C42—H42120.3
C3—C6—H6B109.5C41—C42—H42120.3
H6A—C6—H6B109.5C44—C43—C42121.9 (7)
C3—C6—H6C109.5C44—C43—H43119.1
H6A—C6—H6C109.5C42—C43—H43119.1
H6B—C6—H6C109.5C43—C44—C51125.3 (7)
N1—C7—C8127.4 (5)C43—C44—C45116.3 (7)
N1—C7—H7116.3C51—C44—C45118.4 (7)
C8—C7—H7116.3N5—C45—C46116.2 (6)
C9—C8—C13120.4 (5)N5—C45—C44124.0 (6)
C9—C8—C7123.8 (5)C46—C45—C44119.8 (6)
C13—C8—C7115.8 (5)N6—C46—C47124.1 (6)
O3—C9—C8124.0 (5)N6—C46—C45117.3 (5)
O3—C9—C10119.1 (5)C47—C46—C45118.6 (6)
C8—C9—C10116.9 (5)C48—C47—C46116.1 (7)
O4—C10—C11122.7 (5)C48—C47—C52123.6 (7)
O4—C10—C9115.2 (5)C46—C47—C52120.3 (7)
C11—C10—C9121.9 (5)C49—C48—C47120.2 (7)
C10—C11—C12119.8 (6)C49—C48—H48119.9
C10—C11—H11A120.1C47—C48—H48119.9
C12—C11—H11A120.1C48—C49—C50119.6 (7)
C13—C12—C11119.4 (6)C48—C49—H49120.2
C13—C12—H12A120.3C50—C49—H49120.2
C11—C12—H12A120.3N6—C50—C49122.1 (7)
C12—C13—C8120.9 (6)N6—C50—H50118.9
C12—C13—H13A119.6C49—C50—H50118.9
C8—C13—H13A119.6C52—C51—C44121.7 (7)
O4—C14—H14A109.5C52—C51—H51119.1
O4—C14—H14B109.5C44—C51—H51119.1
H14A—C14—H14B109.5C51—C52—C47121.0 (7)
O4—C14—H14C109.5C51—C52—H52119.5
H14A—C14—H14C109.5C47—C52—H52119.5
H14B—C14—H14C109.5O9—C53—H53A109.5
O6—C15—O5124.2 (6)O9—C53—H53B109.5
O6—C15—C16117.3 (6)H53A—C53—H53B109.5
O5—C15—C16118.4 (5)O9—C53—H53C109.5
N2—C16—C15108.5 (5)H53A—C53—H53C109.5
N2—C16—C17112.3 (5)H53B—C53—H53C109.5
C15—C16—C17109.9 (5)O10—C54—H54A109.5
N2—C16—H16108.7O10—C54—H54B109.5
C15—C16—H16108.7H54A—C54—H54B109.5
C17—C16—H16108.7O10—C54—H54C109.5
C18—C17—C20110.0 (6)H54A—C54—H54C109.5
C18—C17—C16112.4 (6)H54B—C54—H54C109.5
C20—C17—C16111.3 (5)O11—C55—H55A109.5
C18—C17—H17107.6O11—C55—H55B109.5
C20—C17—H17107.6H55A—C55—H55B109.5
C16—C17—H17107.6O11—C55—H55C109.5
C19'—C18—C1963.8 (14)H55A—C55—H55C109.5
C19'—C18—C17124.7 (14)H55B—C55—H55C109.5
C19—C18—C17117.8 (8)O12—C56—H56A109.5
C19—C18—H18A107.9O12—C56—H56B109.5
C17—C18—H18A107.9H56A—C56—H56B109.5
C19'—C18—H18B124.6O12—C56—H56C109.5
C19—C18—H18B107.9H56A—C56—H56C109.5
C17—C18—H18B107.9H56B—C56—H56C109.5
H18A—C18—H18B107.2O13—C57—H57A109.5
C19'—C18—H18C105.2O13—C57—H57B109.5
C19—C18—H18C131.7H57A—C57—H57B109.5
C17—C18—H18C106.9O13—C57—H57C109.5
H18A—C18—H18C72.7H57A—C57—H57C109.5
C19'—C18—H18D107.0H57B—C57—H57C109.5
C1—C2—C3—C485.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O10.821.882.693 (7)169
O10—H10···O50.821.932.659 (7)147
O11—H11···O10i0.821.812.632 (10)178
O12—H12···O15ii0.821.972.75 (2)158
O13—H13···O150.822.122.94 (3)179
O14—H14F···O60.851.912.760 (8)180
O14—H14G···O2i0.852.052.901 (8)180
O15—H15C···O90.851.852.690 (10)169
O15—H15D···O160.852.062.901 (14)171
O16—H16C···O110.851.972.817 (13)178
O16—H16D···O140.851.952.798 (11)178
C18—H18B···O60.972.523.192 (10)126
C29—H29···O40.932.603.348 (8)138
C30—H30···O12iii0.932.573.405 (15)149
C53—H53C···O60.962.533.460 (12)164
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y, z+1; (iii) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Ni2(C14H17NO4)2(C12H8N2)2]·4CH4O·3H2O
Mr1186.62
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)14.1827 (15), 14.3876 (16), 28.787 (2)
V3)5874.1 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.50 × 0.36 × 0.35
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.718, 0.789
No. of measured, independent and
observed [I > 2σ(I)] reflections
24389, 10254, 7528
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.157, 1.04
No. of reflections10254
No. of parameters740
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.38
Absolute structureFlack (1983), 4525 Friedel pairs
Absolute structure parameter0.015 (16)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O10.821.882.693 (7)169
O10—H10···O50.821.932.659 (7)147
O11—H11···O10i0.821.812.632 (10)178
O12—H12···O15ii0.821.972.75 (2)158
O13—H13···O150.822.122.94 (3)179
O14—H14F···O60.851.912.760 (8)180
O14—H14G···O2i0.852.052.901 (8)180
O15—H15C···O90.851.852.690 (10)169
O15—H15D···O160.852.062.901 (14)171
O16—H16C···O110.851.972.817 (13)178
O16—H16D···O140.851.952.798 (11)178
C18—H18B···O60.972.523.192 (10)126
C29—H29···O40.932.603.348 (8)138
C30—H30···O12iii0.932.573.405 (15)149
C53—H53C···O60.962.533.460 (12)164
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y, z+1; (iii) x1/2, y+3/2, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.

References

First citationBernal, M., García-Vázquez, J. A., Romero, J., Gómez, C., Durán, M. L., Sousa, A., Sousa-Pedrares, A., Rose, D. J., Maresca, K. P. & Zubieta, J. (1999). Inorg. Chim. Acta, 295, 39–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChattopadhyay, S., Chakraborty, P., Drew, M. G. B. & Ghosh, A. (2009). Inorg. Chim. Acta, 362, 502–508.  Web of Science CSD CrossRef CAS Google Scholar
First citationChohan, Z. H., Praveen, M. & Ghaffer, A. (1998). Synth. React. Inorg. Met. Org. Chem. 28, 1673–1687.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m371-m372
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds