metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(+)-Chlorido[(1,2,3,4-η;κP2′)-2′-di­phenyl­phosphanyl-2-di­phenyl­phosphoryl-1,1′-binaphth­yl]rhodium(I) methanol monosolvate

aLeibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: hans-joachim.drexler@catalysis.de

(Received 16 January 2012; accepted 26 January 2012; online 10 February 2012)

In the title complex, [RhCl(C44H32OP2)]·CH3OH, the RhI ion is coordinated by a naphthyl group of a partially oxidized 2,2′-bis­(diphenyl­phosphan­yl)-1,1′-binaphthyl (BINAP) ligand in a η4 mode, one P atom of the diphenyl­phosphanyl group and one Cl atom. The P=O group does not inter­act with the RhI ion but accepts an O—H⋯O hydrogen bond from the methanol solvent mol­ecule.

Related literature

For general synthetic aspects of related compounds, see: Bunten et al. (2002[Bunten, K. A., Farrar, D. H., Poe, A. J. & Lough, A. (2002). Organometallics, 21, 3344-3350.]). For related structures of rhodium complexes with BINAP and bis­phosphine diolefin, see: Fischer et al. (2012[Fischer, C., Selle, C., Drexler, H.-J. & Heller, D. (2012). Z. Anorg. Allg. Chem. Submitted.]); Preetz (2009[Preetz, A. (2009). Dissertation, University of Rostock, Germany.]); Preetz et al. (2010[Preetz, A., Drexler, H.-J., Schulz, S. & Heller, D. (2010). Tetrahedron Asymmetry, 21, 1226-1231.]); Tani et al. (1985[Tani, K., Yamagata, T., Tatsuno, Y., Yamagata, Y., Tomita, K., Akutagawa, S., Kumobayashi, H. & Otsuka, S. (1985). Angew. Chem. Int. Ed. 24, 217-219.]).

[Scheme 1]

Experimental

Crystal data
  • [RhCl(C44H32OP2)]·CH4O

  • Mr = 809.04

  • Triclinic, P 1

  • a = 9.2108 (18) Å

  • b = 9.7453 (19) Å

  • c = 11.354 (2) Å

  • α = 103.01 (3)°

  • β = 104.59 (3)°

  • γ = 105.09 (3)°

  • V = 905.0 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 200 K

  • 0.20 × 0.15 × 0.15 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.787, Tmax = 0.953

  • 10887 measured reflections

  • 6247 independent reflections

  • 5695 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.043

  • S = 0.96

  • 6247 reflections

  • 462 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2858 Friedel pairs

  • Flack parameter: −0.012 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O51—H51⋯O1i 0.82 1.95 2.755 (4) 169
Symmetry code: (i) x, y+1, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ligand exchange between 1,5-cyclooctadiene (COD) and 2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl (BINAP, a chiral binaphthyl-based chelating diphosphine) in the complex [Rh(COD)(µ2-Cl)]2 has been investigated by Preetz (2009) and Bunten et al. (2002). When the reaction is carried out at room temperature, either in dichloromethane or toluene, the complex [Rh(BINAP)(µ2-Cl)]2 is formed in 99% yield. The title complex, [Rh(BINAP(O))Cl], containing monooxidized BINAP(O) was isolated from a solution of [Rh(BINAP)(µ2-Cl)]2 and methyl-(Z)-α-acetamidocinnamate (MAC) in MeOH, which contained obviously residual traces of oxygen. The molecular structure of [Rh(BINAP(O))Cl] is shown in Fig. 1.

In the title complex, the RhI atom is η4-coordinated to one of the binaphthyl moieties of the partially oxidized BINAP ligand but not to the O atom. Coordination to O atom is instead observed in the complex [Rh(BINAP(O))(CO)Cl] described by Bunten et al. (2002). This complex has a square-planar geometry with a CO ligand located trans to the O atom. The Rh—P distance of 2.1988 (10) Å in the title complex is by more than 0.1 Å shorter than that in the typical BINAP-rhodium complexes [2.304 (2)–2.335 (2) Å] (Preetz et al., 2010; Tani et al., 1985) and slightly shorter than in [Rh(BINAP(O))(CO)Cl] [2.242 (1) Å]. The Rh—C bond lengths, varying from 2.092 (3) to 2.497 (3) Å, are in the range of the known BINAP-rhodium complexes with benzene (2.226–2.241 Å) (Fischer et al., 2012). The Rh—Cl distance is 2.3222 (15) Å, comparable to that in [Rh(BINAP(O))(CO)Cl] [2.382 (1) Å] (Bunten et al., 2002). An O—H···O hydrogen bond between the methanol solvent molecule and the complex molecule is observed (Table 1).

Related literature top

For general synthetic aspects of related compounds, see: Bunten et al. (2002). For related structures of rhodium complexes with BINAP and bisphosphine diolefin, see: Fischer et al. (2012); Preetz (2009); Preetz et al. (2010); Tani et al. (1985).

Experimental top

[Rh(COD)(µ2-Cl)]2 (0.03 g, 0.06 mmol) and BINAP (0.02 g, 0.03 mmol) were dissolved in tetrahydrofuran at room temperature under anaerobic conditions using standard schlenk-techniques. After stirring for 30 min, the solvent was removed under vacuum. The dark red colored residue was recystallized from CH2Cl2 to afford [Rh(BINAP)(µ2-Cl)]2.

[Rh(BINAP)(µ2-Cl)]2 (0.015 g, 0.01 mmol) and MAC (0.219 g, 1 mmol) were dissolved in 15 ml MeOH and stirred for 6 h under hydrogen. Crystals of the title compound were isolated after two days from the reaction solution, which contained residual traces of oxygen. 31P-NMR (300 MHz, THF-d8): δ 55.3 p.p.m. (d, JP—Rh = 198,3 Hz), δ 24.4 p.p.m.

Refinement top

H atoms were placed in idealized positions and refined using a riding model, with C—H = 0.93 and 0.98 (CH), 0.96 (CH3) and O—H = 0.82 (OH) Å and with Uiso(H) = 1.2(1.5 for methyl and hydroxyl)Ueq(C, O).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. H atoms and the solvent molecule MeOH have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.
(+)-Chlorido[(1,2,3,4-η;κP2')-2'-diphenylphosphanyl-2- diphenylphosphoryl-1,1'-binaphthyl]rhodium(I) methanol monosolvate top
Crystal data top
[RhCl(C44H32OP2)]·CH4OZ = 1
Mr = 809.04F(000) = 414
Triclinic, P1Dx = 1.485 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2108 (18) ÅCell parameters from 11752 reflections
b = 9.7453 (19) Åθ = 2.0–26.1°
c = 11.354 (2) ŵ = 0.67 mm1
α = 103.01 (3)°T = 200 K
β = 104.59 (3)°Prism, deep-purple
γ = 105.09 (3)°0.20 × 0.15 × 0.15 mm
V = 905.0 (4) Å3
Data collection top
Stoe IPDS-2
diffractometer
6247 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus5695 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 6.67 pixels mm-1θmax = 25.6°, θmin = 2.0°
ω scansh = 1111
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 2002)
k = 1111
Tmin = 0.787, Tmax = 0.953l = 1213
10887 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.043 w = 1/[σ2(Fo2) + (0.006P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
6247 reflectionsΔρmax = 0.64 e Å3
462 parametersΔρmin = 0.34 e Å3
3 restraintsAbsolute structure: Flack (1983), 2858 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (17)
Crystal data top
[RhCl(C44H32OP2)]·CH4Oγ = 105.09 (3)°
Mr = 809.04V = 905.0 (4) Å3
Triclinic, P1Z = 1
a = 9.2108 (18) ÅMo Kα radiation
b = 9.7453 (19) ŵ = 0.67 mm1
c = 11.354 (2) ÅT = 200 K
α = 103.01 (3)°0.20 × 0.15 × 0.15 mm
β = 104.59 (3)°
Data collection top
Stoe IPDS-2
diffractometer
6247 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 2002)
5695 reflections with I > 2σ(I)
Tmin = 0.787, Tmax = 0.953Rint = 0.025
10887 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.043Δρmax = 0.64 e Å3
S = 0.96Δρmin = 0.34 e Å3
6247 reflectionsAbsolute structure: Flack (1983), 2858 Friedel pairs
462 parametersAbsolute structure parameter: 0.012 (17)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.25876 (2)0.03654 (2)0.95095 (2)0.01981 (8)
Cl10.46974 (12)0.12625 (12)1.14224 (10)0.0319 (3)
P10.14437 (10)0.16409 (9)0.63082 (8)0.0219 (2)
P20.32439 (10)0.24664 (9)0.90464 (8)0.0199 (2)
O10.2049 (3)0.0336 (2)0.5902 (2)0.0281 (6)
C10.1016 (4)0.1239 (3)0.7790 (3)0.0189 (7)
C20.1186 (4)0.2141 (3)0.8623 (3)0.0236 (8)
H2A0.17570.28500.84910.028*
C30.0725 (4)0.1886 (4)0.9697 (4)0.0292 (9)
H3A0.11130.23061.03710.035*
C40.0324 (4)0.1050 (4)0.9852 (3)0.0249 (8)
C50.1039 (4)0.1040 (4)1.0803 (3)0.0336 (9)
H5A0.08470.16011.13510.040*
C60.2012 (5)0.0219 (4)1.0936 (4)0.0363 (10)
H6A0.24920.02281.15640.044*
C70.2288 (5)0.0639 (4)1.0122 (4)0.0367 (10)
H7A0.29600.11931.02080.044*
C80.1578 (4)0.0671 (4)0.9199 (3)0.0283 (9)
H8A0.17570.12600.86740.034*
C90.0591 (4)0.0169 (3)0.9041 (3)0.0207 (7)
C100.0330 (4)0.0075 (4)0.8172 (3)0.0189 (8)
C110.0256 (4)0.0962 (3)0.7374 (3)0.0164 (7)
C120.1123 (4)0.0643 (3)0.6309 (3)0.0197 (7)
C130.2527 (4)0.0571 (3)0.5984 (3)0.0241 (8)
H13A0.25820.11970.64920.029*
C140.3792 (4)0.0848 (4)0.4955 (4)0.0309 (10)
H14A0.47150.16440.47790.037*
C150.3747 (4)0.0046 (4)0.4137 (4)0.0301 (9)
H15A0.46230.01640.34190.036*
C160.2399 (4)0.1223 (4)0.4416 (3)0.0258 (8)
H16A0.23580.18080.38740.031*
C170.1071 (4)0.1572 (4)0.5501 (3)0.0205 (8)
C180.0318 (4)0.2832 (4)0.5834 (3)0.0244 (8)
H18A0.03540.34490.53180.029*
C190.1596 (4)0.3155 (4)0.6888 (3)0.0225 (8)
H19A0.24810.40020.71030.027*
C200.1577 (4)0.2200 (3)0.7659 (3)0.0191 (8)
C210.2821 (4)0.2656 (3)0.6483 (3)0.0235 (8)
C220.4175 (4)0.2152 (4)0.7585 (4)0.0309 (9)
H22A0.43070.13520.82760.037*
C230.5305 (4)0.2846 (4)0.7637 (4)0.0356 (10)
H23A0.61840.25330.83740.043*
C240.5138 (5)0.3997 (4)0.6605 (4)0.0390 (10)
H24A0.59080.44570.66450.047*
C250.3842 (5)0.4474 (4)0.5513 (4)0.0359 (10)
H25A0.37440.52430.48120.043*
C260.2686 (4)0.3814 (4)0.5457 (4)0.0288 (9)
H26A0.18030.41510.47190.035*
C270.0417 (4)0.2920 (4)0.5157 (3)0.0256 (8)
C280.1017 (5)0.2603 (4)0.4042 (4)0.0356 (10)
H28A0.04330.17620.38970.043*
C290.2464 (5)0.3512 (5)0.3147 (4)0.0460 (12)
H29A0.28540.32800.24050.055*
C300.3323 (6)0.4749 (5)0.3347 (5)0.0437 (13)
H30A0.42980.53690.27390.052*
C310.2753 (4)0.5080 (4)0.4443 (4)0.0382 (10)
H31A0.33480.59250.45770.046*
C320.1311 (6)0.4182 (5)0.5349 (5)0.0293 (10)
H32A0.09360.44200.60900.035*
C330.5078 (4)0.3083 (3)0.8705 (3)0.0224 (8)
C340.5148 (4)0.2566 (4)0.7479 (3)0.0264 (8)
H34A0.42250.19440.68120.032*
C350.6569 (4)0.2968 (4)0.7248 (4)0.0336 (9)
H35A0.66000.26180.64260.040*
C360.7940 (4)0.3881 (4)0.8220 (4)0.0367 (10)
H36A0.88920.41680.80510.044*
C370.7910 (4)0.4376 (4)0.9452 (4)0.0393 (10)
H37A0.88450.49801.01150.047*
C380.6493 (4)0.3974 (4)0.9693 (4)0.0301 (9)
H38A0.64790.43011.05240.036*
C390.3227 (4)0.4097 (4)1.0203 (3)0.0241 (8)
C400.3914 (4)0.5553 (4)1.0213 (4)0.0300 (10)
H40A0.44840.57210.96600.036*
C410.3764 (5)0.6748 (4)1.1029 (4)0.0405 (11)
H41A0.42420.77161.10320.049*
C420.2902 (5)0.6505 (5)1.1843 (4)0.0441 (11)
H42A0.27840.73081.23880.053*
C430.2222 (5)0.5080 (5)1.1844 (4)0.0393 (10)
H43A0.16550.49201.24010.047*
C440.2370 (4)0.3867 (4)1.1023 (3)0.0309 (9)
H44A0.18920.29021.10270.037*
O510.2263 (4)0.9663 (3)0.3525 (3)0.0569 (9)
H510.22010.95440.42060.085*
C510.2415 (6)1.1147 (5)0.3574 (5)0.0596 (13)
H51A0.15611.13920.38090.089*
H51B0.23731.12590.27490.089*
H51C0.34161.18050.41980.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01928 (16)0.02279 (17)0.01809 (17)0.00796 (13)0.00489 (13)0.00812 (14)
Cl10.0259 (6)0.0422 (7)0.0227 (6)0.0104 (5)0.0018 (5)0.0090 (5)
P10.0221 (5)0.0203 (5)0.0204 (5)0.0060 (4)0.0058 (4)0.0039 (4)
P20.0187 (5)0.0211 (5)0.0187 (5)0.0054 (4)0.0056 (4)0.0062 (4)
O10.0376 (16)0.0261 (13)0.0225 (14)0.0095 (11)0.0137 (12)0.0082 (11)
C10.0158 (17)0.0167 (16)0.0225 (19)0.0052 (14)0.0036 (15)0.0064 (15)
C20.0217 (18)0.0262 (18)0.0247 (19)0.0104 (15)0.0068 (16)0.0097 (16)
C30.022 (2)0.035 (2)0.038 (2)0.0124 (17)0.0086 (18)0.0215 (19)
C40.0192 (18)0.0296 (19)0.0248 (19)0.0061 (15)0.0059 (15)0.0103 (16)
C50.036 (2)0.041 (2)0.032 (2)0.0128 (18)0.0149 (18)0.0230 (19)
C60.040 (3)0.050 (3)0.026 (2)0.016 (2)0.020 (2)0.015 (2)
C70.037 (2)0.040 (2)0.042 (2)0.019 (2)0.021 (2)0.013 (2)
C80.031 (2)0.031 (2)0.029 (2)0.0137 (18)0.0132 (18)0.0128 (18)
C90.0167 (17)0.0191 (17)0.0219 (18)0.0014 (14)0.0050 (14)0.0050 (15)
C100.0148 (18)0.0172 (18)0.019 (2)0.0053 (14)0.0010 (16)0.0006 (16)
C110.0179 (17)0.0172 (16)0.0181 (18)0.0087 (14)0.0088 (15)0.0063 (14)
C120.0195 (18)0.0215 (18)0.0186 (18)0.0093 (14)0.0078 (15)0.0029 (15)
C130.025 (2)0.0230 (18)0.026 (2)0.0064 (15)0.0087 (16)0.0114 (16)
C140.019 (2)0.031 (2)0.032 (2)0.0007 (17)0.0008 (18)0.0088 (19)
C150.026 (2)0.034 (2)0.026 (2)0.0121 (17)0.0004 (17)0.0100 (18)
C160.033 (2)0.029 (2)0.0194 (19)0.0134 (18)0.0079 (16)0.0117 (16)
C170.0237 (19)0.0197 (18)0.0209 (19)0.0119 (15)0.0084 (15)0.0052 (15)
C180.029 (2)0.0243 (19)0.028 (2)0.0138 (16)0.0117 (17)0.0158 (17)
C190.0190 (19)0.0221 (19)0.026 (2)0.0045 (15)0.0079 (16)0.0085 (16)
C200.0203 (19)0.0171 (17)0.0202 (19)0.0087 (14)0.0081 (15)0.0018 (15)
C210.0221 (19)0.0210 (18)0.026 (2)0.0038 (15)0.0100 (16)0.0067 (16)
C220.0217 (19)0.035 (2)0.034 (2)0.0069 (16)0.0095 (17)0.0089 (18)
C230.026 (2)0.039 (2)0.046 (3)0.0122 (18)0.0128 (19)0.019 (2)
C240.038 (2)0.035 (2)0.065 (3)0.0228 (18)0.030 (2)0.028 (2)
C250.044 (3)0.024 (2)0.046 (2)0.0133 (18)0.025 (2)0.0080 (19)
C260.031 (2)0.027 (2)0.032 (2)0.0100 (16)0.0146 (18)0.0097 (17)
C270.026 (2)0.0245 (19)0.025 (2)0.0111 (16)0.0074 (16)0.0036 (16)
C280.036 (2)0.037 (2)0.027 (2)0.0082 (19)0.0062 (19)0.0086 (19)
C290.042 (3)0.055 (3)0.027 (2)0.013 (2)0.002 (2)0.006 (2)
C300.031 (3)0.044 (3)0.037 (3)0.005 (2)0.000 (2)0.004 (2)
C310.028 (3)0.028 (2)0.047 (3)0.0001 (18)0.010 (2)0.004 (2)
C320.026 (2)0.028 (2)0.031 (2)0.0075 (16)0.0090 (18)0.0063 (18)
C330.0243 (19)0.0188 (17)0.0232 (19)0.0074 (15)0.0048 (16)0.0080 (15)
C340.023 (2)0.029 (2)0.025 (2)0.0082 (16)0.0068 (16)0.0059 (17)
C350.038 (2)0.038 (2)0.038 (2)0.0188 (19)0.022 (2)0.0191 (19)
C360.025 (2)0.038 (2)0.063 (3)0.0137 (18)0.028 (2)0.026 (2)
C370.021 (2)0.036 (2)0.048 (3)0.0032 (17)0.0034 (19)0.007 (2)
C380.024 (2)0.030 (2)0.031 (2)0.0036 (17)0.0105 (17)0.0061 (17)
C390.0214 (18)0.0278 (19)0.0184 (18)0.0089 (15)0.0014 (15)0.0032 (15)
C400.028 (2)0.026 (2)0.031 (2)0.0091 (17)0.0036 (17)0.0072 (19)
C410.041 (3)0.029 (2)0.039 (3)0.0150 (19)0.002 (2)0.001 (2)
C420.044 (3)0.045 (3)0.030 (2)0.027 (2)0.003 (2)0.008 (2)
C430.041 (2)0.052 (3)0.024 (2)0.023 (2)0.0105 (19)0.002 (2)
C440.030 (2)0.033 (2)0.026 (2)0.0101 (17)0.0053 (17)0.0076 (18)
O510.075 (2)0.058 (2)0.0428 (19)0.0185 (17)0.0309 (19)0.0154 (16)
C510.083 (4)0.056 (3)0.054 (3)0.026 (3)0.039 (3)0.022 (3)
Geometric parameters (Å, º) top
Rh1—C12.092 (3)C21—C221.408 (4)
Rh1—C102.113 (3)C22—C231.377 (5)
Rh1—P22.1988 (10)C22—H22A0.9300
Rh1—C22.289 (3)C23—C241.372 (5)
Rh1—Cl12.3222 (15)C23—H23A0.9300
Rh1—C32.497 (3)C24—C251.372 (5)
P1—O11.471 (2)C24—H24A0.9300
P1—C271.796 (4)C25—C261.376 (5)
P1—C211.800 (4)C25—H25A0.9300
P1—C11.804 (3)C26—H26A0.9300
P2—C331.809 (4)C27—C281.384 (5)
P2—C201.815 (3)C27—C321.386 (5)
P2—C391.826 (4)C28—C291.376 (5)
C1—C21.437 (4)C28—H28A0.9300
C1—C101.470 (5)C29—C301.360 (6)
C2—C31.381 (5)C29—H29A0.9300
C2—H2A0.9800C30—C311.367 (6)
C3—C41.435 (5)C30—H30A0.9300
C3—H3A0.9800C31—C321.374 (6)
C4—C51.399 (5)C31—H31A0.9300
C4—C91.413 (4)C32—H32A0.9300
C5—C61.362 (5)C33—C341.393 (5)
C5—H5A0.9300C33—C381.395 (5)
C6—C71.399 (5)C34—C351.374 (5)
C6—H6A0.9300C34—H34A0.9300
C7—C81.370 (5)C35—C361.369 (5)
C7—H7A0.9300C35—H35A0.9300
C8—C91.390 (5)C36—C371.383 (5)
C8—H8A0.9300C36—H36A0.9300
C9—C101.457 (5)C37—C381.376 (5)
C10—C111.505 (4)C37—H37A0.9300
C11—C201.379 (4)C38—H38A0.9300
C11—C121.422 (4)C39—C441.383 (5)
C12—C131.405 (4)C39—C401.391 (4)
C12—C171.428 (4)C40—C411.377 (5)
C13—C141.343 (5)C40—H40A0.9300
C13—H13A0.9300C41—C421.383 (6)
C14—C151.410 (5)C41—H41A0.9300
C14—H14A0.9300C42—C431.367 (5)
C15—C161.362 (5)C42—H42A0.9300
C15—H15A0.9300C43—C441.392 (5)
C16—C171.401 (4)C43—H43A0.9300
C16—H16A0.9300C44—H44A0.9300
C17—C181.420 (5)O51—C511.403 (5)
C18—C191.359 (4)O51—H510.8200
C18—H18A0.9300C51—H51A0.9600
C19—C201.413 (4)C51—H51B0.9600
C19—H19A0.9300C51—H51C0.9600
C21—C261.381 (5)
C1—Rh1—C1040.93 (13)C18—C17—C12118.8 (3)
C1—Rh1—P2105.25 (9)C19—C18—C17121.5 (3)
C10—Rh1—P284.52 (10)C19—C18—H18A119.2
C1—Rh1—C237.95 (11)C17—C18—H18A119.2
C10—Rh1—C267.61 (12)C18—C19—C20119.8 (3)
P2—Rh1—C2143.03 (8)C18—C19—H19A120.1
C1—Rh1—Cl1155.05 (9)C20—C19—H19A120.1
C10—Rh1—Cl1160.82 (10)C11—C20—C19120.8 (3)
P2—Rh1—Cl193.61 (5)C11—C20—P2115.4 (2)
C2—Rh1—Cl1120.65 (9)C19—C20—P2123.9 (2)
C1—Rh1—C363.69 (12)C26—C21—C22118.7 (3)
C10—Rh1—C373.12 (12)C26—C21—P1119.9 (3)
P2—Rh1—C3155.56 (8)C22—C21—P1120.8 (3)
C2—Rh1—C333.19 (12)C23—C22—C21119.8 (4)
Cl1—Rh1—C3104.21 (9)C23—C22—H22A120.1
O1—P1—C27111.31 (15)C21—C22—H22A120.1
O1—P1—C21111.22 (15)C24—C23—C22120.3 (4)
C27—P1—C21107.29 (16)C24—C23—H23A119.9
O1—P1—C1115.56 (14)C22—C23—H23A119.9
C27—P1—C1103.97 (16)C23—C24—C25120.4 (4)
C21—P1—C1106.92 (16)C23—C24—H24A119.8
C33—P2—C20109.10 (16)C25—C24—H24A119.8
C33—P2—C39105.40 (16)C24—C25—C26120.0 (4)
C20—P2—C39101.86 (15)C24—C25—H25A120.0
C33—P2—Rh1120.06 (11)C26—C25—H25A120.0
C20—P2—Rh1103.91 (11)C25—C26—C21120.8 (4)
C39—P2—Rh1114.93 (11)C25—C26—H26A119.6
C2—C1—C10115.1 (3)C21—C26—H26A119.6
C2—C1—P1121.6 (3)C28—C27—C32118.3 (4)
C10—C1—P1123.1 (2)C28—C27—P1118.4 (3)
C2—C1—Rh178.50 (19)C32—C27—P1123.3 (3)
C10—C1—Rh170.30 (18)C29—C28—C27121.0 (4)
P1—C1—Rh1124.85 (16)C29—C28—H28A119.5
C3—C2—C1120.4 (3)C27—C28—H28A119.5
C3—C2—Rh181.7 (2)C30—C29—C28120.0 (4)
C1—C2—Rh163.55 (17)C30—C29—H29A120.0
C3—C2—H2A119.6C28—C29—H29A120.0
C1—C2—H2A119.6C29—C30—C31119.9 (4)
Rh1—C2—H2A119.6C29—C30—H30A120.0
C2—C3—C4122.4 (3)C31—C30—H30A120.0
C2—C3—Rh165.13 (19)C30—C31—C32120.9 (4)
C4—C3—Rh188.4 (2)C30—C31—H31A119.6
C2—C3—H3A118.8C32—C31—H31A119.6
C4—C3—H3A118.8C31—C32—C27120.0 (5)
Rh1—C3—H3A118.8C31—C32—H32A120.0
C5—C4—C9119.4 (3)C27—C32—H32A120.0
C5—C4—C3122.2 (3)C34—C33—C38118.3 (3)
C9—C4—C3118.4 (3)C34—C33—P2121.0 (3)
C6—C5—C4120.7 (3)C38—C33—P2120.4 (3)
C6—C5—H5A119.6C35—C34—C33120.6 (3)
C4—C5—H5A119.6C35—C34—H34A119.7
C5—C6—C7119.7 (4)C33—C34—H34A119.7
C5—C6—H6A120.1C36—C35—C34120.5 (4)
C7—C6—H6A120.1C36—C35—H35A119.7
C8—C7—C6120.7 (4)C34—C35—H35A119.7
C8—C7—H7A119.7C35—C36—C37120.0 (4)
C6—C7—H7A119.7C35—C36—H36A120.0
C7—C8—C9120.5 (3)C37—C36—H36A120.0
C7—C8—H8A119.8C38—C37—C36119.8 (4)
C9—C8—H8A119.8C38—C37—H37A120.1
C8—C9—C4119.0 (3)C36—C37—H37A120.1
C8—C9—C10123.5 (3)C37—C38—C33120.7 (4)
C4—C9—C10117.2 (3)C37—C38—H38A119.6
C9—C10—C1121.0 (3)C33—C38—H38A119.6
C9—C10—C11120.9 (3)C44—C39—C40118.6 (3)
C1—C10—C11116.2 (3)C44—C39—P2118.5 (3)
C9—C10—Rh197.8 (2)C40—C39—P2122.7 (3)
C1—C10—Rh168.76 (18)C41—C40—C39121.1 (4)
C11—C10—Rh1115.7 (2)C41—C40—H40A119.5
C20—C11—C12120.3 (3)C39—C40—H40A119.5
C20—C11—C10118.8 (3)C40—C41—C42119.8 (4)
C12—C11—C10120.9 (3)C40—C41—H41A120.1
C13—C12—C11123.4 (3)C42—C41—H41A120.1
C13—C12—C17117.9 (3)C43—C42—C41119.7 (4)
C11—C12—C17118.7 (3)C43—C42—H42A120.2
C14—C13—C12121.5 (3)C41—C42—H42A120.2
C14—C13—H13A119.3C42—C43—C44120.8 (4)
C12—C13—H13A119.3C42—C43—H43A119.6
C13—C14—C15121.2 (3)C44—C43—H43A119.6
C13—C14—H14A119.4C39—C44—C43120.0 (4)
C15—C14—H14A119.4C39—C44—H44A120.0
C16—C15—C14118.9 (3)C43—C44—H44A120.0
C16—C15—H15A120.6C51—O51—H51109.5
C14—C15—H15A120.6O51—C51—H51A109.5
C15—C16—C17121.6 (3)O51—C51—H51B109.5
C15—C16—H16A119.2H51A—C51—H51B109.5
C17—C16—H16A119.2O51—C51—H51C109.5
C16—C17—C18122.2 (3)H51A—C51—H51C109.5
C16—C17—C12119.0 (3)H51B—C51—H51C109.5
C1—Rh1—P2—C3397.23 (16)C3—Rh1—C10—C169.07 (19)
C10—Rh1—P2—C33132.86 (16)C1—Rh1—C10—C11109.8 (3)
C2—Rh1—P2—C3392.7 (2)P2—Rh1—C10—C1111.1 (2)
Cl1—Rh1—P2—C3366.29 (13)C2—Rh1—C10—C11144.1 (3)
C3—Rh1—P2—C33156.5 (3)Cl1—Rh1—C10—C1196.4 (4)
C1—Rh1—P2—C2024.97 (15)C3—Rh1—C10—C11178.9 (3)
C10—Rh1—P2—C2010.66 (16)C9—C10—C11—C20110.3 (4)
C2—Rh1—P2—C2029.5 (2)C1—C10—C11—C2085.2 (4)
Cl1—Rh1—P2—C20171.52 (12)Rh1—C10—C11—C207.3 (4)
C3—Rh1—P2—C2034.3 (3)C9—C10—C11—C1272.4 (4)
C1—Rh1—P2—C39135.37 (15)C1—C10—C11—C1292.1 (4)
C10—Rh1—P2—C3999.74 (16)Rh1—C10—C11—C12170.0 (2)
C2—Rh1—P2—C39139.94 (18)C20—C11—C12—C13178.0 (3)
Cl1—Rh1—P2—C3961.12 (12)C10—C11—C12—C134.7 (5)
C3—Rh1—P2—C3976.1 (3)C20—C11—C12—C173.9 (5)
O1—P1—C1—C2148.9 (2)C10—C11—C12—C17173.3 (3)
C27—P1—C1—C288.9 (3)C11—C12—C13—C14178.7 (4)
C21—P1—C1—C224.5 (3)C17—C12—C13—C140.7 (5)
O1—P1—C1—C1037.2 (3)C12—C13—C14—C151.8 (6)
C27—P1—C1—C1085.1 (3)C13—C14—C15—C161.0 (6)
C21—P1—C1—C10161.6 (3)C14—C15—C16—C170.8 (5)
O1—P1—C1—Rh150.7 (2)C15—C16—C17—C18177.3 (4)
C27—P1—C1—Rh1172.95 (19)C15—C16—C17—C121.9 (5)
C21—P1—C1—Rh173.7 (2)C13—C12—C17—C161.1 (5)
C10—Rh1—C1—C2122.2 (3)C11—C12—C17—C16177.0 (3)
P2—Rh1—C1—C2175.53 (17)C13—C12—C17—C18178.1 (3)
Cl1—Rh1—C1—C237.7 (3)C11—C12—C17—C183.8 (5)
C3—Rh1—C1—C227.86 (18)C16—C17—C18—C19180.0 (4)
P2—Rh1—C1—C1062.26 (19)C12—C17—C18—C190.8 (5)
C2—Rh1—C1—C10122.2 (3)C17—C18—C19—C202.0 (5)
Cl1—Rh1—C1—C10159.92 (19)C12—C11—C20—C191.2 (5)
C3—Rh1—C1—C1094.4 (2)C10—C11—C20—C19176.1 (3)
C10—Rh1—C1—P1117.2 (3)C12—C11—C20—P2179.9 (2)
P2—Rh1—C1—P154.9 (2)C10—C11—C20—P22.8 (4)
C2—Rh1—C1—P1120.6 (3)C18—C19—C20—C111.8 (5)
Cl1—Rh1—C1—P182.9 (3)C18—C19—C20—P2177.1 (3)
C3—Rh1—C1—P1148.5 (2)C33—P2—C20—C11139.8 (3)
C10—C1—C2—C30.2 (4)C39—P2—C20—C11109.1 (3)
P1—C1—C2—C3174.6 (3)Rh1—P2—C20—C1110.6 (3)
Rh1—C1—C2—C361.4 (3)C33—P2—C20—C1939.2 (3)
C10—C1—C2—Rh161.6 (2)C39—P2—C20—C1971.9 (3)
P1—C1—C2—Rh1124.0 (2)Rh1—P2—C20—C19168.3 (3)
C1—Rh1—C2—C3130.1 (3)O1—P1—C21—C2691.1 (3)
C10—Rh1—C2—C393.2 (2)C27—P1—C21—C2630.9 (3)
P2—Rh1—C2—C3137.25 (17)C1—P1—C21—C26141.9 (3)
Cl1—Rh1—C2—C367.4 (2)O1—P1—C21—C2279.4 (3)
C10—Rh1—C2—C136.8 (2)C27—P1—C21—C22158.6 (3)
P2—Rh1—C2—C17.2 (3)C1—P1—C21—C2247.6 (3)
Cl1—Rh1—C2—C1162.55 (16)C26—C21—C22—C232.1 (5)
C3—Rh1—C2—C1130.1 (3)P1—C21—C22—C23172.7 (3)
C1—C2—C3—C418.1 (5)C21—C22—C23—C241.9 (5)
Rh1—C2—C3—C470.6 (3)C22—C23—C24—C250.3 (5)
C1—C2—C3—Rh152.6 (3)C23—C24—C25—C261.1 (6)
C1—Rh1—C3—C231.7 (2)C24—C25—C26—C210.9 (5)
C10—Rh1—C3—C274.7 (2)C22—C21—C26—C250.7 (5)
P2—Rh1—C3—C299.4 (3)P1—C21—C26—C25171.4 (3)
Cl1—Rh1—C3—C2124.99 (19)O1—P1—C27—C282.9 (4)
C1—Rh1—C3—C495.5 (2)C21—P1—C27—C28119.0 (3)
C10—Rh1—C3—C452.4 (2)C1—P1—C27—C28128.0 (3)
P2—Rh1—C3—C427.7 (4)O1—P1—C27—C32174.6 (4)
C2—Rh1—C3—C4127.1 (3)C21—P1—C27—C3263.5 (4)
Cl1—Rh1—C3—C4107.9 (2)C1—P1—C27—C3249.6 (4)
C2—C3—C4—C5167.0 (3)C32—C27—C28—C290.1 (6)
Rh1—C3—C4—C5134.1 (3)P1—C27—C28—C29177.6 (4)
C2—C3—C4—C915.3 (5)C27—C28—C29—C300.4 (7)
Rh1—C3—C4—C943.6 (3)C28—C29—C30—C310.5 (8)
C9—C4—C5—C61.4 (5)C29—C30—C31—C320.3 (8)
C3—C4—C5—C6179.1 (4)C30—C31—C32—C270.0 (8)
C4—C5—C6—C70.7 (6)C28—C27—C32—C310.1 (7)
C5—C6—C7—C80.5 (6)P1—C27—C32—C31177.7 (4)
C6—C7—C8—C91.1 (6)C20—P2—C33—C3434.8 (3)
C7—C8—C9—C40.4 (5)C39—P2—C33—C34143.5 (3)
C7—C8—C9—C10173.5 (4)Rh1—P2—C33—C3484.8 (3)
C5—C4—C9—C80.9 (5)C20—P2—C33—C38151.5 (3)
C3—C4—C9—C8178.6 (3)C39—P2—C33—C3842.8 (3)
C5—C4—C9—C10172.7 (3)Rh1—P2—C33—C3888.9 (3)
C3—C4—C9—C105.0 (4)C38—C33—C34—C352.1 (5)
C8—C9—C10—C1164.0 (3)P2—C33—C34—C35175.9 (3)
C4—C9—C10—C122.7 (4)C33—C34—C35—C360.1 (5)
C8—C9—C10—C110.2 (5)C34—C35—C36—C371.6 (5)
C4—C9—C10—C11173.5 (3)C35—C36—C37—C381.3 (6)
C8—C9—C10—Rh1126.2 (3)C36—C37—C38—C330.7 (5)
C4—C9—C10—Rh147.1 (3)C34—C33—C38—C372.3 (5)
C2—C1—C10—C920.0 (4)P2—C33—C38—C37176.2 (3)
P1—C1—C10—C9154.3 (2)C33—P2—C39—C44154.2 (3)
Rh1—C1—C10—C986.3 (3)C20—P2—C39—C4491.9 (3)
C2—C1—C10—C11175.5 (3)Rh1—P2—C39—C4419.7 (3)
P1—C1—C10—C1110.3 (4)C33—P2—C39—C4031.9 (3)
Rh1—C1—C10—C11109.2 (3)C20—P2—C39—C4082.0 (3)
C2—C1—C10—Rh166.3 (2)Rh1—P2—C39—C40166.4 (2)
P1—C1—C10—Rh1119.4 (2)C44—C39—C40—C410.6 (5)
C1—Rh1—C10—C9120.3 (3)P2—C39—C40—C41174.5 (3)
P2—Rh1—C10—C9118.8 (2)C39—C40—C41—C420.8 (5)
C2—Rh1—C10—C986.0 (2)C40—C41—C42—C430.9 (6)
Cl1—Rh1—C10—C933.6 (4)C41—C42—C43—C440.9 (6)
C3—Rh1—C10—C951.2 (2)C40—C39—C44—C430.6 (5)
P2—Rh1—C10—C1120.93 (18)P2—C39—C44—C43174.7 (3)
C2—Rh1—C10—C134.25 (17)C42—C43—C44—C390.7 (5)
Cl1—Rh1—C10—C1153.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O51—H51···O1i0.821.952.755 (4)169
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[RhCl(C44H32OP2)]·CH4O
Mr809.04
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)9.2108 (18), 9.7453 (19), 11.354 (2)
α, β, γ (°)103.01 (3), 104.59 (3), 105.09 (3)
V3)905.0 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.20 × 0.15 × 0.15
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.787, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
10887, 6247, 5695
Rint0.025
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.043, 0.96
No. of reflections6247
No. of parameters462
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.34
Absolute structureFlack (1983), 2858 Friedel pairs
Absolute structure parameter0.012 (17)

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O51—H51···O1i0.821.952.755 (4)169
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by the Leibniz-Institut für Katalyse e.V. an der Universität Rostock.

References

First citationBunten, K. A., Farrar, D. H., Poe, A. J. & Lough, A. (2002). Organometallics, 21, 3344–3350.  Web of Science CSD CrossRef CAS Google Scholar
First citationFischer, C., Selle, C., Drexler, H.-J. & Heller, D. (2012). Z. Anorg. Allg. Chem. Submitted.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPreetz, A. (2009). Dissertation, University of Rostock, Germany.  Google Scholar
First citationPreetz, A., Drexler, H.-J., Schulz, S. & Heller, D. (2010). Tetrahedron Asymmetry, 21, 1226–1231.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTani, K., Yamagata, T., Tatsuno, Y., Yamagata, Y., Tomita, K., Akutagawa, S., Kumobayashi, H. & Otsuka, S. (1985). Angew. Chem. Int. Ed. 24, 217–219.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds