metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­aqua­bis­­(1H-imidazole-4-carboxyl­ato-κ2N3,O4)nickel(II)

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: wgzhang@scnu.edu.cn

(Received 24 April 2011; accepted 17 May 2011; online 11 June 2011)

In the title complex, [Ni(C4H3N2O2)2(H2O)2], the NiII ion is located on an inversion center and shows a distorted octa­hedral geometry, defined by two N,O-bidentate 1H-imidazole-4-carboxyl­ate ligands in the equatorial plane and two water mol­ecules in the axial positions. Inter­molecular N—H⋯O hydrogen bonds link the complex mol­ecules into layers parallel to (10[\overline{2}]), which are further linked into a three-dimensional supra­molecular network through O—H⋯O hydrogen bonds.

Related literature

For general background to the design and synthesis of coordination polymers, see: Choi & Jeon (2003[Choi, K. Y. & Jeon, Y. M. (2003). Inorg. Chem. Commun. 6, 1294-1296.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Roesky & Andruh (2003[Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91-119.]); Tao et al. (2000[Tao, J., Tong, M.-L. & Chen, X.-M. (2000). J. Chem. Soc. Dalton Trans. pp. 3669-3674.]). For complexes with imidazole-4,5-dicarb­oxy­lic acid, see: Alkordi et al. (2009[Alkordi, M. H., Brant, J. A., Wojtas, L., Kravtsov, V. C., Cairns, A. J. & Eddaoudi, M. (2009). J. Am. Chem. Soc. 131, 17753-17755.]); Lu et al. (2009[Lu, W.-G., Jiang, L., Feng, X.-L. & Lu, T.-B. (2009). Inorg. Chem. 48, 6997-6999.]); Sun et al. (2005[Sun, Y.-Q., Zhang, J., Chen, Y.-M. & Yang, G.-Y. (2005). Angew. Chem. Int. Ed. 44, 5814-5817.]). For related structures, see: Gryz et al. (2007[Gryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539-546.]); Haggag (2005[Haggag, S. S. (2005). Egypt. J. Chem. 48, 27-41.]); Starosta & Leciejewicz (2006[Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m2648-m2650.]); Xu et al. (2008[Xu, Q., Zou, R.-Q., Zhong, R.-Q., Kachi-Terajima, C. & Takamizawa, S. (2008). Cryst. Growth Des. 8, 2458-2463.]); Yin et al. (2009[Yin, W.-P., Li, Y.-G., Mei, X.-L. & Yao, J.-C. (2009). Chin. J. Struct. Chem. 28, 1155-1159.]); Zheng et al. (2011[Zheng, S.-R., Cai, S.-L., Pan, M., Fan, J., Xiao, T.-T. & Zhang, W.-G. (2011). CrystEngComm, 13, 883-888.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C4H3N2O2)2(H2O)2]

  • Mr = 316.91

  • Monoclinic, P 21 /c

  • a = 6.6123 (18) Å

  • b = 12.267 (3) Å

  • c = 7.239 (2) Å

  • β = 101.059 (3)°

  • V = 576.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.72 mm−1

  • T = 298 K

  • 0.48 × 0.36 × 0.32 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.493, Tmax = 0.610

  • 2878 measured reflections

  • 1043 independent reflections

  • 947 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.070

  • S = 1.07

  • 1043 reflections

  • 88 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O2i 0.86 2.16 2.942 (3) 152
N2—H2N⋯O1i 0.86 2.36 3.130 (2) 149
O1W—H1WA⋯O2ii 0.83 1.94 2.762 (2) 169
O1W—H1WB⋯O2iii 0.84 1.94 2.7654 (19) 168
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rational design and synthesis of coordination polymers have received extensive attention over the past decades (Moulton & Zaworotko, 2001; Roesky & Andruh, 2003). The choice of suitable ligands is an important factor that greatly affects the structure and stabilization of the coordination architecture (Choi & Jeon, 2003; Tao et al., 2000). Recently, our group has focused on constructing coordination polymers based on N-heterocyclic carboxylic acids (Zheng et al., 2011). 1H-Imidazole-4-carboxylic acid (H2imc), which is recognized as efficient N/O donors exhibiting versatile coordination behaviors and potential hydrogen-bonding abilities, remains largely unexplored, compared with its analogue imidazole-4,5-dicarboxylic acid (Alkordi et al., 2009; Lu et al., 2009; Sun et al., 2005). A few of mononuclear complexes based on the H2imc ligand have been reported (Gryz et al., 2007; Haggag, 2005; Starosta & Leciejewicz, 2006; Yin et al., 2009). In this work, we report the synthesis and structure of a new NiII complex, which was obtained by the solvothermal reaction of Ni(ClO4)2.6H2O and H2imc.

The asymmetric unit contains a half of [Ni(Himc)2(H2O)2] formula unit, with the NiII ion lying on an inversion center. The NiII ion exhibits a distorted octahedral geometry, in which two bidentate chelating Himc ligands are located in the equatorial plane, forming two stable five-membered rings with metal ion, and the axial sites are occupied by two coordinated water molecules (Fig. 1). The Ni—O distances range from 2.0764 (13) to 2.0947 (17) Å and Ni—N bonds have the value of 2.0502 (17) Å, which are similar to the reported NiII complexes with imidazole-based carboxylate ligands (Xu et al., 2008).

In the crystal, each complex molecule is joined to four adjacent ones via N2–H2···O1ii and N2–H2···O2ii hydrogen bonds between the imidazole N—H group and carboxylate O atoms (Table 1) [symmetry code: (ii) x + 1, -y + 1/2, z + 1/2], generating a two-dimensional hydrogen-bonded sheet parallel to (1 0 2) (Fig. 2). These sheets are further linked by O—H···O hydrogen bonds involving the coordinated water molecules (O1W) and carboxylate O atoms (O2), resulting in a three-dimensional supramolecular network (Fig. 3).

Related literature top

For general background to the design and synthesis of coordination polymers, see: Choi & Jeon (2003); Moulton & Zaworotko (2001); Roesky & Andruh (2003); Tao et al. (2000). For complexes with imidazole-4,5-dicarboxylic acid, see: Alkordi et al. (2009); Lu et al. (2009); Sun et al. (2005). For related structures, see: Gryz et al. (2007); Haggag (2005); Starosta & Leciejewicz (2006); Xu et al. (2008); Yin et al. (2009); Zheng et al. (2011).

Experimental top

A mixture of Ni(ClO4)2.6H2O (41.9 mg, 0.10 mmol), H2imc (11.2 mg, 0.10 mmol), NaOH (4.0 mg, 0.10 mmol) and EtOH/H2O (v/v 1:1, 6 ml) was sealed in a 10 ml Teflon-lined stainless-steel reactor, which was heated to 100°C for 48 h under autogenous pressure, and then slowly cooled to room temperature at a rate of 5°C h-1. Pale green block crystals of the title compound were isolated, washed with distilled water and dried in air (yield: 78%). IR (KBr, cm-1): 3340 s, 2923 m, 2853 w, 2350 w, 1598 s, 1461 m, 1427 w, 1402 w, 1357 m, 1287 w, 1260 w, 1091 s, 1039 m, 854 w, 806 w, 723 m, 655 w, 544 m, 456w.

Refinement top

C– and N-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq (C, N). H atoms of water molecule were located from a difference Fourier map and refined as riding atoms with O—H = 0.84 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) 1 - x, -y, -z.]
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the two-dimensional hydrogen-bonded network. Hydrogen bonds are shown as dashed lines. [Symmetry code: (ii) x + 1, -y + 1/2, z + 1/2.]
[Figure 3] Fig. 3. The crystal packing of the title compound, showing the three-dimensional hydrogen-bonded network. Hydrogen bonds are shown as dashed lines.
trans-Diaquabis(1H-imidazole-4-carboxylato- κ2N3,O4)nickel(II) top
Crystal data top
[Ni(C4H3N2O2)2(H2O)2]F(000) = 324
Mr = 316.91Dx = 1.826 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1803 reflections
a = 6.6123 (18) Åθ = 3.1–27.8°
b = 12.267 (3) ŵ = 1.72 mm1
c = 7.239 (2) ÅT = 298 K
β = 101.059 (3)°Block, pale green
V = 576.2 (3) Å30.48 × 0.36 × 0.32 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
1043 independent reflections
Radiation source: fine-focus sealed tube947 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.2°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.493, Tmax = 0.610k = 1414
2878 measured reflectionsl = 87
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.1301P]
where P = (Fo2 + 2Fc2)/3
1043 reflections(Δ/σ)max < 0.001
88 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ni(C4H3N2O2)2(H2O)2]V = 576.2 (3) Å3
Mr = 316.91Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.6123 (18) ŵ = 1.72 mm1
b = 12.267 (3) ÅT = 298 K
c = 7.239 (2) Å0.48 × 0.36 × 0.32 mm
β = 101.059 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1043 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
947 reflections with I > 2σ(I)
Tmin = 0.493, Tmax = 0.610Rint = 0.027
2878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
1043 reflectionsΔρmin = 0.42 e Å3
88 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.00000.02288 (16)
N10.7437 (3)0.09727 (13)0.1157 (2)0.0289 (4)
C30.8498 (3)0.26678 (17)0.1929 (3)0.0331 (5)
H20.85370.34220.20700.040*
C40.9370 (3)0.09539 (18)0.2052 (3)0.0401 (6)
H41.01570.03250.23120.048*
C20.6866 (3)0.20552 (15)0.1070 (3)0.0226 (4)
N21.0046 (3)0.19580 (17)0.2536 (3)0.0411 (5)
H2N1.12600.21250.31320.049*
O20.4160 (2)0.32925 (10)0.0090 (2)0.0322 (4)
O10.3604 (2)0.15166 (10)0.0480 (2)0.0270 (3)
O1W0.4100 (3)0.00996 (9)0.2616 (2)0.0307 (4)
C10.4750 (3)0.23191 (17)0.0111 (2)0.0225 (4)
H1WA0.46440.06320.32360.027*
H1WB0.42540.04830.32410.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0221 (3)0.0146 (2)0.0284 (2)0.00075 (12)0.00422 (15)0.00212 (12)
N10.0249 (10)0.0224 (9)0.0348 (9)0.0037 (7)0.0057 (7)0.0029 (7)
C30.0268 (11)0.0294 (11)0.0410 (12)0.0075 (9)0.0013 (9)0.0092 (9)
C40.0267 (13)0.0401 (13)0.0473 (13)0.0096 (10)0.0089 (10)0.0050 (10)
C20.0213 (10)0.0200 (9)0.0249 (9)0.0018 (7)0.0001 (8)0.0020 (7)
N20.0179 (9)0.0548 (12)0.0455 (11)0.0031 (8)0.0066 (8)0.0147 (9)
O20.0348 (9)0.0188 (7)0.0385 (9)0.0048 (6)0.0037 (6)0.0020 (5)
O10.0211 (7)0.0199 (7)0.0348 (7)0.0010 (6)0.0076 (6)0.0025 (6)
O1W0.0403 (10)0.0188 (7)0.0306 (8)0.0027 (6)0.0008 (7)0.0008 (5)
C10.0243 (11)0.0214 (11)0.0204 (9)0.0008 (7)0.0008 (8)0.0003 (7)
Geometric parameters (Å, º) top
Ni1—N12.0502 (17)C4—N21.334 (3)
Ni1—O12.0764 (13)C4—H40.9300
Ni1—O1W2.0947 (17)C2—C11.473 (3)
N1—C41.318 (3)N2—H2N0.8600
N1—C21.379 (3)O2—C11.256 (2)
C3—N21.352 (3)O1—C11.266 (2)
C3—C21.363 (3)O1W—H1WA0.83
C3—H20.9300O1W—H1WB0.84
N1i—Ni1—N1180.00 (10)N2—C3—H2127.0
N1i—Ni1—O1i80.58 (6)C2—C3—H2127.0
N1—Ni1—O1i99.42 (6)N1—C4—N2110.96 (19)
N1i—Ni1—O199.42 (6)N1—C4—H4124.5
N1—Ni1—O180.58 (6)N2—C4—H4124.5
O1i—Ni1—O1180.00 (8)C3—C2—N1108.92 (18)
N1i—Ni1—O1Wi90.11 (7)C3—C2—C1133.68 (19)
N1—Ni1—O1Wi89.89 (7)N1—C2—C1117.39 (16)
O1i—Ni1—O1Wi90.53 (5)C4—N2—C3108.32 (18)
O1—Ni1—O1Wi89.47 (5)C4—N2—H2N125.8
N1i—Ni1—O1W89.89 (7)C3—N2—H2N125.8
N1—Ni1—O1W90.11 (7)C1—O1—Ni1114.94 (12)
O1i—Ni1—O1W89.47 (5)Ni1—O1W—H1WA111.4
O1—Ni1—O1W90.53 (5)Ni1—O1W—H1WB114.2
O1Wi—Ni1—O1W180.00 (11)H1WA—O1W—H1WB112.4
C4—N1—C2105.70 (17)O2—C1—O1123.19 (17)
C4—N1—Ni1143.40 (15)O2—C1—C2120.62 (18)
C2—N1—Ni1110.80 (13)O1—C1—C2116.20 (17)
N2—C3—C2106.10 (18)
O1i—Ni1—N1—C42.4 (3)C4—N1—C2—C1179.45 (17)
O1—Ni1—N1—C4177.6 (3)Ni1—N1—C2—C13.3 (2)
O1Wi—Ni1—N1—C492.9 (3)N1—C4—N2—C30.2 (3)
O1W—Ni1—N1—C487.1 (3)C2—C3—N2—C40.2 (2)
O1i—Ni1—N1—C2177.92 (12)N1i—Ni1—O1—C1179.42 (13)
O1—Ni1—N1—C22.08 (12)N1—Ni1—O1—C10.58 (13)
O1Wi—Ni1—N1—C291.56 (13)O1Wi—Ni1—O1—C190.55 (13)
O1W—Ni1—N1—C288.44 (13)O1W—Ni1—O1—C189.45 (13)
C2—N1—C4—N20.2 (2)Ni1—O1—C1—O2178.85 (13)
Ni1—N1—C4—N2175.53 (18)Ni1—O1—C1—C21.03 (19)
N2—C3—C2—N10.1 (2)C3—C2—C1—O22.5 (3)
N2—C3—C2—C1179.5 (2)N1—C2—C1—O2176.88 (16)
C4—N1—C2—C30.0 (2)C3—C2—C1—O1177.7 (2)
Ni1—N1—C2—C3177.21 (13)N1—C2—C1—O13.0 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O2ii0.862.162.942 (3)152
N2—H2N···O1ii0.862.363.130 (2)149
O1W—H1WA···O2iii0.831.942.762 (2)169
O1W—H1WB···O2iv0.841.942.7654 (19)168
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C4H3N2O2)2(H2O)2]
Mr316.91
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.6123 (18), 12.267 (3), 7.239 (2)
β (°) 101.059 (3)
V3)576.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.72
Crystal size (mm)0.48 × 0.36 × 0.32
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.493, 0.610
No. of measured, independent and
observed [I > 2σ(I)] reflections
2878, 1043, 947
Rint0.027
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.07
No. of reflections1043
No. of parameters88
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.42

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O2i0.862.162.942 (3)152
N2—H2N···O1i0.862.363.130 (2)149
O1W—H1WA···O2ii0.831.942.762 (2)169
O1W—H1WB···O2iii0.841.942.7654 (19)168
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (grant No. 21003053) and the Natural Science Foundation of Guangdong (grant No. 10451063101004667).

References

First citationAlkordi, M. H., Brant, J. A., Wojtas, L., Kravtsov, V. C., Cairns, A. J. & Eddaoudi, M. (2009). J. Am. Chem. Soc. 131, 17753–17755.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, K. Y. & Jeon, Y. M. (2003). Inorg. Chem. Commun. 6, 1294–1296.  Web of Science CSD CrossRef CAS Google Scholar
First citationGryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539–546.  Web of Science CSD CrossRef CAS Google Scholar
First citationHaggag, S. S. (2005). Egypt. J. Chem. 48, 27–41.  CAS Google Scholar
First citationLu, W.-G., Jiang, L., Feng, X.-L. & Lu, T.-B. (2009). Inorg. Chem. 48, 6997–6999.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91–119.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m2648–m2650.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, Y.-Q., Zhang, J., Chen, Y.-M. & Yang, G.-Y. (2005). Angew. Chem. Int. Ed. 44, 5814–5817.  Web of Science CSD CrossRef CAS Google Scholar
First citationTao, J., Tong, M.-L. & Chen, X.-M. (2000). J. Chem. Soc. Dalton Trans. pp. 3669–3674.  Web of Science CSD CrossRef Google Scholar
First citationXu, Q., Zou, R.-Q., Zhong, R.-Q., Kachi-Terajima, C. & Takamizawa, S. (2008). Cryst. Growth Des. 8, 2458–2463.  CrossRef CAS Google Scholar
First citationYin, W.-P., Li, Y.-G., Mei, X.-L. & Yao, J.-C. (2009). Chin. J. Struct. Chem. 28, 1155–1159.  CAS Google Scholar
First citationZheng, S.-R., Cai, S.-L., Pan, M., Fan, J., Xiao, T.-T. & Zhang, W.-G. (2011). CrystEngComm, 13, 883–888.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds