metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-methanolato-κ4O:O-bis­[tri­chlorido(di­methyl­formamide-κO)tin(IV)]

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: handongyin@163.com

(Received 14 December 2010; accepted 24 December 2010; online 8 January 2011)

The title compound, [Sn2(CH3O)2Cl6(C3H7NO)2], contains two hexa­coordinated SnIV atoms symmetrically bridged by two deprotonated methanol ligands, with an inversion center in the middle of the planar Sn2O2 ring. The other sites of the distorted octa­hedral coordination geometry of the SnIV atom are occupied by three Cl atoms and one O atom from a dimethyl­formamide mol­ecule. The complex mol­ecules are connected by weak C—H⋯Cl hydrogen bonds into a two-dimensional supra­molecular network parallel to (10[\overline{1}]).

Related literature

For related tin(IV) compounds, see: Mao & You (1990[Mao, X.-A. & You, X.-Z. (1990). Acta Physico-Chimica Sinica, 6, 743-746.]); Reuter & Schröder (1992[Reuter, H. & Schröder, D. (1992). Acta Cryst. C48, 1112-1114.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn2(CH3O)2Cl6(C3H7NO)2]

  • Mr = 658.34

  • Monoclinic, P 21 /n

  • a = 8.589 (8) Å

  • b = 11.4444 (13) Å

  • c = 11.8453 (10) Å

  • β = 111.155 (1)°

  • V = 1085.9 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.05 mm−1

  • T = 298 K

  • 0.22 × 0.17 × 0.16 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.553, Tmax = 0.641

  • 5512 measured reflections

  • 1903 independent reflections

  • 1554 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.117

  • S = 1.14

  • 1903 reflections

  • 103 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 1.54 e Å−3

  • Δρmin = −2.07 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—O1 2.106 (5)
Sn1—O1i 2.101 (5)
Sn1—O2 2.108 (4)
Sn1—Cl1 2.372 (2)
Sn1—Cl2 2.3743 (18)
Sn1—Cl3 2.368 (2)
Symmetry code: (i) -x+2, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯Cl3 0.96 2.72 3.356 (8) 124
C3—H3A⋯Cl3ii 0.96 2.95 3.895 (11) 170
C4—H4B⋯Cl1iii 0.96 2.90 3.837 (9) 164
Symmetry codes: (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (Fig.1) consists of six Cl anions, two methoxo anions, two SnIV ions and two dimethylformamide molecules. The molecule has an inversion center in the middle of the Sn2O2 ring. This ring is planar and can be described as rhombic, with the endocyclic angles at the O atoms larger than those at the Sn atoms [Sn1i—O1—Sn1 = 106.9 (2), O1i—Sn1—O1 = 73.1 (2)°. Symmetry code: (i) -x+2, -y, -z+1]. The Sn1—O1 distance [2.106 (5) Å] is very close to the Sn1—O1i distance [2.101 (5) Å] (Table 1). Each SnIV atom is hexacoordinated with two methoxo anions, three Cl anions and one dimethylformamide molecule in a distorted octahedral geometry.

As is indicated from Fig. 2 and Table 2, the intramolecular interactions, C1—H1C···Cl3, strengthen the dimeric unit and the intermolecular ones, C3—H3A···Cl3ii and C4—H4B···Cl1iii [symmetry codes: (ii) x+1/2, -y+1/2, z+1/2; (iii) -x+3/2, y+1/2, -z+1/2], give rise to a two-dimensional polymer-like supramolecular network.

Related literature top

For related tin(IV) compounds, see: Mao & You (1990); Reuter & Schröder (1992).

Experimental top

Stannic chloride hydrate (0.4 mmol, 0.14 g) was dissolved in methanol (20 ml) and dimethylformamide (5 ml) was added with stirring at room temperature. The mixture was allowed to react for 6 h and was then filtered. Colorless crystals suitable for X-ray analysis were obtained by slow evaporation of methanol over a period of two weeks (yield: 60%). Analysis, calculated for C8H20Cl6N2O4Sn2: C 14.59, H 3.06, N 4.25%; found: C 14.58, H 3.04, N 4.27%.

Refinement top

H atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). The highest residual electron density was found at 0.72 Å from H1A atom and the deepest hole at 1.01 Å from Sn1 atom.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids. [Symmetry code: (i) -x+2, -y, -z+1.]
[Figure 2] Fig. 2. A view of the two-dimensional polymer-like supramolecular network in the title compound.
Di-µ-methanolato-κ4O:O-bis[trichlorido(dimethylformamide- κO)tin(IV)] top
Crystal data top
[Sn2(CH3O)2Cl6(C3H7NO)2]F(000) = 632
Mr = 658.34Dx = 2.013 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2694 reflections
a = 8.589 (8) Åθ = 2.6–27.0°
b = 11.4444 (13) ŵ = 3.05 mm1
c = 11.8453 (10) ÅT = 298 K
β = 111.155 (1)°Block, colourless
V = 1085.9 (10) Å30.22 × 0.17 × 0.16 mm
Z = 2
Data collection top
Bruker APEX CCD
diffractometer
1903 independent reflections
Radiation source: fine-focus sealed tube1554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 610
Tmin = 0.553, Tmax = 0.641k = 1312
5512 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.065P)2]
where P = (Fo2 + 2Fc2)/3
1903 reflections(Δ/σ)max = 0.012
103 parametersΔρmax = 1.54 e Å3
13 restraintsΔρmin = 2.07 e Å3
Crystal data top
[Sn2(CH3O)2Cl6(C3H7NO)2]V = 1085.9 (10) Å3
Mr = 658.34Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.589 (8) ŵ = 3.05 mm1
b = 11.4444 (13) ÅT = 298 K
c = 11.8453 (10) Å0.22 × 0.17 × 0.16 mm
β = 111.155 (1)°
Data collection top
Bruker APEX CCD
diffractometer
1903 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1554 reflections with I > 2σ(I)
Tmin = 0.553, Tmax = 0.641Rint = 0.063
5512 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04413 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.14Δρmax = 1.54 e Å3
1903 reflectionsΔρmin = 2.07 e Å3
103 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.99552 (5)0.07346 (3)0.37511 (4)0.0383 (2)
Cl11.1769 (3)0.06088 (15)0.3320 (2)0.0619 (5)
Cl21.1500 (2)0.24014 (15)0.35788 (19)0.0586 (5)
Cl30.7989 (3)0.07190 (15)0.17440 (19)0.0629 (5)
N10.7652 (7)0.3252 (5)0.5241 (5)0.0498 (14)
O10.8762 (6)0.0591 (4)0.4372 (5)0.0511 (10)
O20.8269 (5)0.1862 (4)0.4134 (4)0.0461 (10)
C10.7018 (10)0.0904 (6)0.3757 (7)0.0556 (11)
H1A0.63230.03590.39740.083*
H1B0.68280.16770.39930.083*
H1C0.67500.08810.28970.083*
C20.8701 (8)0.2657 (5)0.4921 (6)0.0438 (15)
H20.98320.28240.52900.053*
C30.8233 (14)0.4147 (7)0.6175 (10)0.078 (3)
H3A0.94200.42360.64110.117*
H3B0.79680.39190.68640.117*
H3C0.76960.48760.58640.117*
C40.5869 (9)0.3028 (7)0.4732 (9)0.072 (2)
H4A0.56790.22180.45170.109*
H4B0.53720.35010.40230.109*
H4C0.53770.32170.53190.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0438 (3)0.0350 (3)0.0425 (3)0.00087 (17)0.0231 (2)0.00141 (16)
Cl10.0809 (14)0.0551 (10)0.0707 (13)0.0188 (9)0.0527 (11)0.0088 (8)
Cl20.0610 (11)0.0488 (9)0.0764 (13)0.0084 (8)0.0371 (10)0.0094 (8)
Cl30.0709 (13)0.0691 (12)0.0452 (10)0.0061 (9)0.0165 (9)0.0006 (8)
N10.056 (4)0.044 (3)0.059 (4)0.008 (3)0.032 (3)0.000 (3)
O10.0531 (15)0.0515 (15)0.0514 (15)0.0033 (12)0.0221 (12)0.0004 (12)
O20.043 (2)0.044 (2)0.056 (3)0.001 (2)0.023 (2)0.008 (2)
C10.0560 (14)0.0550 (13)0.0553 (14)0.0025 (9)0.0195 (9)0.0009 (9)
C20.048 (4)0.044 (3)0.044 (3)0.003 (3)0.022 (3)0.004 (3)
C30.097 (7)0.065 (5)0.083 (7)0.001 (4)0.046 (6)0.030 (4)
C40.051 (5)0.071 (5)0.099 (7)0.016 (4)0.031 (4)0.000 (5)
Geometric parameters (Å, º) top
Sn1—O12.106 (5)O2—C21.259 (7)
Sn1—O1i2.101 (5)C1—H1A0.9600
Sn1—O22.108 (4)C1—H1B0.9600
Sn1—Cl12.372 (2)C1—H1C0.9600
Sn1—Cl22.3743 (18)C2—H20.9300
Sn1—Cl32.368 (2)C3—H3A0.9600
N1—C21.291 (8)C3—H3B0.9600
N1—C41.452 (9)C3—H3C0.9600
N1—C31.457 (10)C4—H4A0.9600
O1—C11.455 (9)C4—H4B0.9600
O1—Sn1i2.101 (5)C4—H4C0.9600
O1i—Sn1—O287.65 (18)O1—C1—H1A109.5
O1i—Sn1—O173.1 (2)O1—C1—H1B109.5
O2—Sn1—O184.69 (19)H1A—C1—H1B109.5
O1i—Sn1—Cl3166.73 (15)O1—C1—H1C109.5
O2—Sn1—Cl385.64 (14)H1A—C1—H1C109.5
O1—Sn1—Cl394.86 (16)H1B—C1—H1C109.5
O1i—Sn1—Cl192.45 (15)O2—C2—N1123.2 (6)
O2—Sn1—Cl1177.31 (12)O2—C2—H2118.4
O1—Sn1—Cl192.76 (15)N1—C2—H2118.4
Cl3—Sn1—Cl193.72 (9)N1—C3—H3A109.5
O1i—Sn1—Cl293.32 (14)N1—C3—H3B109.5
O2—Sn1—Cl288.59 (13)H3A—C3—H3B109.5
O1—Sn1—Cl2165.05 (15)N1—C3—H3C109.5
Cl3—Sn1—Cl297.94 (8)H3A—C3—H3C109.5
Cl1—Sn1—Cl294.09 (8)H3B—C3—H3C109.5
C2—N1—C4121.9 (6)N1—C4—H4A109.5
C2—N1—C3120.6 (7)N1—C4—H4B109.5
C4—N1—C3117.4 (6)H4A—C4—H4B109.5
C1—O1—Sn1i124.2 (4)N1—C4—H4C109.5
C1—O1—Sn1123.0 (4)H4A—C4—H4C109.5
Sn1i—O1—Sn1106.9 (2)H4B—C4—H4C109.5
C2—O2—Sn1124.0 (4)
O1i—Sn1—O1—C1154.0 (6)Cl2—Sn1—O1—Sn1i25.5 (7)
O2—Sn1—O1—C164.8 (5)O1i—Sn1—O2—C242.9 (5)
Cl3—Sn1—O1—C120.3 (5)O1—Sn1—O2—C2116.2 (5)
Cl1—Sn1—O1—C1114.3 (5)Cl3—Sn1—O2—C2148.5 (5)
Cl2—Sn1—O1—C1128.5 (6)Cl2—Sn1—O2—C250.4 (5)
O1i—Sn1—O1—Sn1i0.0Sn1—O2—C2—N1171.9 (5)
O2—Sn1—O1—Sn1i89.1 (2)C4—N1—C2—O21.6 (10)
Cl3—Sn1—O1—Sn1i174.30 (17)C3—N1—C2—O2178.8 (7)
Cl1—Sn1—O1—Sn1i91.72 (19)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···Cl30.962.723.356 (8)124
C3—H3A···Cl3ii0.962.953.895 (11)170
C4—H4B···Cl1iii0.962.903.837 (9)164
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn2(CH3O)2Cl6(C3H7NO)2]
Mr658.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.589 (8), 11.4444 (13), 11.8453 (10)
β (°) 111.155 (1)
V3)1085.9 (10)
Z2
Radiation typeMo Kα
µ (mm1)3.05
Crystal size (mm)0.22 × 0.17 × 0.16
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.553, 0.641
No. of measured, independent and
observed [I > 2σ(I)] reflections
5512, 1903, 1554
Rint0.063
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.117, 1.14
No. of reflections1903
No. of parameters103
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.54, 2.07

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and X-SEED (Barbour, 2001), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Sn1—O12.106 (5)Sn1—Cl12.372 (2)
Sn1—O1i2.101 (5)Sn1—Cl22.3743 (18)
Sn1—O22.108 (4)Sn1—Cl32.368 (2)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···Cl30.962.723.356 (8)124
C3—H3A···Cl3ii0.962.953.895 (11)170
C4—H4B···Cl1iii0.962.903.837 (9)164
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We acknowledge the National Natural Science Foundation of China (grant No. 20771053), the National Basic Research Program (grant No. 2010CB234601) and the Natural Science Foundation of Shandong Province (Y2008B48) for financial support. This work was also supported by the Shandong Tai-Shan Scholar Research Fund.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMao, X.-A. & You, X.-Z. (1990). Acta Physico-Chimica Sinica, 6, 743–746.  CAS Google Scholar
First citationReuter, H. & Schröder, D. (1992). Acta Cryst. C48, 1112–1114.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds