metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1191-m1192

Undeca­carbonyl-1κ3C,2κ4C,3κ4C-[tris­­(2-chloro­eth­yl) phosphite-1κP]-triangulo-triruthenium(0)

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 14 August 2010; accepted 23 August 2010; online 4 September 2010)

In the title triangulo-triruthenium compound, [Ru3(C6H12Cl3O3P)(CO)11], one equatorial carbonyl ligand is substituted by a monodentate phosphite ligand, leaving one equatorial and two axial carbonyl ligands on one Ru atom. The remaining two Ru atoms each carry two equatorial and two axial terminal carbonyl ligands. In the crystal structure, the mol­ecules are linked into a one-dimensional column along [100] by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985[Bruce, M. I., Shawkataly, O. bin & Williams, M. L. (1985). J. Organomet. Chem. 287, 127-131.], 1988a[Bruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988a). J. Organomet. Chem. 347, 181-205.],b[Bruce, M. I., Liddell, M. J., Shawkataly, O. bin, Hughes, C. A., Skelton, B. W. & White, A. H. (1988b). J. Organomet. Chem. 347, 207-235.]). For the synthesis, see: Bruce et al. (1987[Bruce, M. I., Nicholson, B. K. & Williams, M. L. (1987). Inorg. Synth. 26, 273.]). For related structures, see: Shawkataly et al. (1991[Shawkataly, O. bin, Teoh, S. G. & Fun, H.-K. (1991). Z. Kristallogr. 194, 193-198.], 2010[Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m223-m224.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru3(C6H12Cl3O3P)(CO)11]

  • Mr = 880.80

  • Triclinic, [P \overline 1]

  • a = 7.8592 (9) Å

  • b = 12.5979 (14) Å

  • c = 14.8393 (17) Å

  • α = 109.442 (3)°

  • β = 93.791 (3)°

  • γ = 90.763 (3)°

  • V = 1381.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.03 mm−1

  • T = 100 K

  • 0.20 × 0.19 × 0.03 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.691, Tmax = 0.936

  • 32458 measured reflections

  • 11981 independent reflections

  • 9935 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.120

  • S = 1.07

  • 11981 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 1.36 e Å−3

  • Δρmin = −1.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯O4i 0.97 2.58 3.297 (4) 131
C17—H17B⋯O5ii 0.97 2.54 3.307 (4) 136
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Syntheses and structures of substituted triangulo-triruthenium clusters have been of interest to researchers due to observed structural variations and their potential catalytic activity. A large number of substituted derivatives, Ru3(CO)12-nLn (L= group 15 ligands), have been reported (Bruce et al., 1985, 1988a,b). As part of our ongoing studies on phosphite substituted triangulo-triruthenium clusters (Shawkataly et al., 1991, 2010), herein we report the structure of the title compound.

In the title compound (Fig. 1), a monodentate phosphite ligand has replaced a single carbonyl ligand of the Ru3 triangle. The monodentate phosphite ligand is bonded equatorially to the Ru1 atoms of the triangulo-triruthenium unit. Thus, the Ru2 and Ru3 atoms each carry two equatorial and two axial terminal carbonyl ligands, while the phosphite-bonded Ru1 atom binds one equatorial and two axial terminal carbonyl ligands.

In the crystal structure, the molecules are linked into a one-dimensional column along [1 0 0] by intermolecular C—H···O hydrogen bonds (Fig. 2, Table 1).

Related literature top

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985, 1988a,b). For the synthesis, see: Bruce et al. (1987). For related structures, see: Shawkataly et al. (1991, 2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

All the manipulations were performed under a dry oxygen-free nitrogen atmosphere using standard Schlenk techniques. THF was dried over sodium wire and freshly distilled from sodium benzophenone ketyl solution. The title compound was prepared by mixing Ru3(CO)12 (Aldrich) and P(OCH2CH2Cl)3 (Maybridge) in a 1:1 molar ratio in THF at 40°C. Diphenylketyl radical anion initiator of about 0.2 ml (synthesized as per the method of Bruce et al., 1987) was introduced into the reaction mixture under a current of nitrogen. After stirring of 15 min, the solvent was removed under vacuum. Separation of the product in a pure form was done by column chromatography (Florisil, 100–200 mesh; eluant, dichloromethane: hexane). Crystals suitable for X-ray diffraction were grown by slow diffusion of CH3OH into the CH2Cl2 solution.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). The maximum and minimum residual electron density peaks of 1.36 and -1.36 eÅ-3 were located 1.32 and 0.81 Å from the C8 and Ru3 atoms, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis, showing the molecules linked into one-dimensional columns along the a axis.
Undecacarbonyl-1κ3C,2κ4C,3κ4C- [tris(2-chloroethyl) phosphite-1κP]-triangulo-triruthenium(0) top
Crystal data top
[Ru3(C6H12Cl3O3P)(CO)11]Z = 2
Mr = 880.80F(000) = 848
Triclinic, P1Dx = 2.117 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8592 (9) ÅCell parameters from 9961 reflections
b = 12.5979 (14) Åθ = 2.6–34.9°
c = 14.8393 (17) ŵ = 2.03 mm1
α = 109.442 (3)°T = 100 K
β = 93.791 (3)°Plate, orange
γ = 90.763 (3)°0.20 × 0.19 × 0.03 mm
V = 1381.4 (3) Å3
Data collection top
Bruker APEXII DUO CCD
diffractometer
11981 independent reflections
Radiation source: fine-focus sealed tube9935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 35.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1211
Tmin = 0.691, Tmax = 0.936k = 2020
32458 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0712P)2]
where P = (Fo2 + 2Fc2)/3
11981 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 1.36 e Å3
0 restraintsΔρmin = 1.36 e Å3
Crystal data top
[Ru3(C6H12Cl3O3P)(CO)11]γ = 90.763 (3)°
Mr = 880.80V = 1381.4 (3) Å3
Triclinic, P1Z = 2
a = 7.8592 (9) ÅMo Kα radiation
b = 12.5979 (14) ŵ = 2.03 mm1
c = 14.8393 (17) ÅT = 100 K
α = 109.442 (3)°0.20 × 0.19 × 0.03 mm
β = 93.791 (3)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
11981 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
9935 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 0.936Rint = 0.037
32458 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.07Δρmax = 1.36 e Å3
11981 reflectionsΔρmin = 1.36 e Å3
343 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.71803 (3)0.328125 (16)0.260791 (13)0.01152 (5)
Ru20.70797 (3)0.443891 (16)0.125659 (14)0.01282 (5)
Ru30.90548 (3)0.247218 (16)0.093890 (14)0.01285 (5)
Cl11.27297 (12)0.29528 (8)0.52857 (7)0.0393 (2)
Cl20.44453 (13)0.08078 (8)0.26311 (8)0.0408 (2)
Cl30.87744 (12)0.12562 (8)0.59050 (6)0.03316 (18)
P10.81185 (9)0.19414 (5)0.32030 (5)0.01243 (11)
O10.4173 (3)0.1665 (2)0.15829 (18)0.0261 (5)
O20.4589 (3)0.4615 (2)0.39455 (16)0.0272 (5)
O31.0116 (3)0.48098 (19)0.38775 (16)0.0243 (4)
O41.0024 (4)0.6040 (2)0.24393 (19)0.0312 (5)
O50.4624 (4)0.6254 (2)0.2229 (2)0.0353 (6)
O60.4026 (3)0.2931 (2)0.01285 (18)0.0264 (5)
O70.8072 (3)0.4917 (2)0.05275 (17)0.0285 (5)
O80.6085 (3)0.0883 (2)0.02193 (18)0.0286 (5)
O91.0676 (3)0.03923 (18)0.11984 (17)0.0237 (4)
O101.2121 (3)0.3946 (2)0.21192 (18)0.0246 (4)
O111.0379 (3)0.2483 (2)0.09539 (17)0.0296 (5)
O121.0146 (3)0.20752 (17)0.34233 (15)0.0185 (4)
O130.7651 (3)0.06914 (16)0.25139 (14)0.0167 (3)
O140.7425 (3)0.18383 (16)0.41609 (13)0.0156 (3)
C10.5297 (4)0.2259 (2)0.1906 (2)0.0170 (5)
C20.5606 (4)0.4129 (2)0.34655 (19)0.0176 (5)
C30.9063 (4)0.4263 (2)0.33632 (19)0.0162 (4)
C40.8986 (4)0.5401 (2)0.2013 (2)0.0197 (5)
C50.5525 (4)0.5573 (2)0.1872 (2)0.0213 (5)
C60.5187 (4)0.3433 (2)0.0568 (2)0.0186 (5)
C70.7704 (4)0.4744 (2)0.0129 (2)0.0190 (5)
C80.7114 (4)0.1509 (2)0.0235 (2)0.0195 (5)
C91.0079 (4)0.1172 (2)0.1112 (2)0.0176 (5)
C101.0934 (4)0.3452 (2)0.1710 (2)0.0178 (5)
C110.9900 (4)0.2496 (2)0.0249 (2)0.0191 (5)
C121.1191 (4)0.1307 (2)0.3739 (2)0.0201 (5)
H12A1.13510.06320.32010.024*
H12B1.06270.10900.42170.024*
C131.2881 (4)0.1874 (3)0.4157 (2)0.0251 (6)
H13A1.33460.22000.37150.030*
H13B1.36610.13160.42380.030*
C140.7869 (4)0.0323 (2)0.2750 (2)0.0206 (5)
H14A0.77940.01600.34330.025*
H14B0.89820.06190.25850.025*
C150.6486 (4)0.1176 (2)0.2195 (2)0.0241 (6)
H15A0.67600.19070.22370.029*
H15B0.64490.12350.15250.029*
C160.7696 (4)0.2759 (2)0.50584 (19)0.0183 (5)
H16A0.69510.33680.50600.022*
H16B0.88690.30460.51500.022*
C170.7303 (4)0.2308 (3)0.5846 (2)0.0211 (5)
H17A0.61490.19840.57270.025*
H17B0.73740.29190.64550.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01204 (9)0.01129 (8)0.01162 (8)0.00113 (6)0.00190 (6)0.00414 (6)
Ru20.01309 (9)0.01271 (8)0.01366 (9)0.00183 (6)0.00155 (6)0.00559 (6)
Ru30.01169 (9)0.01307 (9)0.01344 (9)0.00218 (6)0.00272 (6)0.00355 (6)
Cl10.0261 (4)0.0352 (4)0.0420 (5)0.0005 (3)0.0078 (4)0.0045 (4)
Cl20.0277 (4)0.0341 (4)0.0615 (6)0.0012 (3)0.0209 (4)0.0140 (4)
Cl30.0348 (4)0.0420 (4)0.0343 (4)0.0164 (4)0.0094 (3)0.0264 (4)
P10.0123 (3)0.0118 (2)0.0135 (3)0.0009 (2)0.0010 (2)0.0046 (2)
O10.0173 (10)0.0285 (11)0.0295 (11)0.0045 (8)0.0009 (8)0.0065 (9)
O20.0225 (11)0.0326 (12)0.0220 (10)0.0072 (9)0.0069 (8)0.0018 (9)
O30.0253 (11)0.0209 (9)0.0222 (10)0.0057 (8)0.0020 (8)0.0023 (8)
O40.0335 (14)0.0245 (11)0.0345 (13)0.0079 (10)0.0086 (11)0.0108 (10)
O50.0309 (14)0.0253 (11)0.0446 (15)0.0083 (10)0.0135 (11)0.0026 (10)
O60.0194 (11)0.0268 (11)0.0283 (11)0.0004 (9)0.0045 (9)0.0044 (9)
O70.0285 (12)0.0391 (13)0.0258 (11)0.0016 (10)0.0059 (9)0.0205 (10)
O80.0215 (11)0.0243 (10)0.0319 (12)0.0010 (9)0.0000 (9)0.0013 (9)
O90.0224 (11)0.0202 (9)0.0298 (11)0.0062 (8)0.0044 (8)0.0093 (8)
O100.0159 (10)0.0268 (11)0.0281 (11)0.0014 (8)0.0003 (8)0.0054 (9)
O110.0287 (12)0.0397 (13)0.0222 (10)0.0015 (10)0.0085 (9)0.0117 (9)
O120.0127 (8)0.0203 (9)0.0260 (10)0.0015 (7)0.0007 (7)0.0125 (8)
O130.0218 (10)0.0126 (7)0.0158 (8)0.0002 (7)0.0008 (7)0.0050 (6)
O140.0175 (9)0.0153 (8)0.0138 (8)0.0015 (7)0.0026 (7)0.0046 (6)
C10.0152 (11)0.0186 (11)0.0176 (11)0.0021 (9)0.0017 (9)0.0063 (9)
C20.0178 (12)0.0191 (11)0.0164 (10)0.0013 (9)0.0015 (9)0.0064 (9)
C30.0179 (12)0.0143 (10)0.0170 (10)0.0007 (9)0.0031 (9)0.0056 (8)
C40.0179 (12)0.0191 (11)0.0235 (12)0.0007 (9)0.0005 (10)0.0093 (10)
C50.0212 (13)0.0180 (11)0.0234 (12)0.0006 (10)0.0048 (10)0.0047 (10)
C60.0180 (12)0.0169 (11)0.0212 (12)0.0027 (9)0.0031 (9)0.0065 (9)
C70.0171 (12)0.0210 (11)0.0215 (12)0.0029 (9)0.0018 (9)0.0103 (10)
C80.0145 (11)0.0198 (11)0.0235 (12)0.0027 (9)0.0046 (9)0.0056 (10)
C90.0148 (11)0.0180 (11)0.0188 (11)0.0007 (9)0.0043 (9)0.0042 (9)
C100.0150 (11)0.0198 (11)0.0184 (11)0.0023 (9)0.0019 (9)0.0059 (9)
C110.0174 (12)0.0208 (11)0.0183 (11)0.0024 (9)0.0034 (9)0.0053 (9)
C120.0168 (12)0.0188 (11)0.0245 (12)0.0054 (9)0.0009 (10)0.0074 (10)
C130.0143 (12)0.0297 (14)0.0306 (15)0.0042 (11)0.0002 (11)0.0092 (12)
C140.0266 (14)0.0119 (10)0.0230 (12)0.0020 (9)0.0004 (11)0.0057 (9)
C150.0252 (14)0.0147 (11)0.0292 (14)0.0003 (10)0.0065 (11)0.0023 (10)
C160.0223 (13)0.0160 (10)0.0147 (10)0.0022 (9)0.0022 (9)0.0022 (8)
C170.0204 (13)0.0283 (13)0.0156 (11)0.0073 (11)0.0020 (9)0.0084 (10)
Geometric parameters (Å, º) top
Ru1—C21.905 (3)O5—C51.131 (4)
Ru1—C31.945 (3)O6—C61.135 (4)
Ru1—C11.946 (3)O7—C71.120 (4)
Ru1—P12.2609 (7)O8—C81.135 (4)
Ru1—Ru22.8431 (4)O9—C91.136 (4)
Ru1—Ru32.8610 (4)O10—C101.133 (4)
Ru2—C51.922 (3)O11—C111.130 (4)
Ru2—C71.929 (3)O12—C121.450 (3)
Ru2—C61.936 (3)O13—C141.443 (3)
Ru2—C41.949 (3)O14—C161.446 (3)
Ru2—Ru32.8622 (4)C12—C131.493 (4)
Ru3—C91.919 (3)C12—H12A0.9700
Ru3—C111.934 (3)C12—H12B0.9700
Ru3—C81.945 (3)C13—H13A0.9700
Ru3—C101.950 (3)C13—H13B0.9700
Cl1—C131.784 (3)C14—C151.509 (4)
Cl2—C151.779 (3)C14—H14A0.9700
Cl3—C171.790 (3)C14—H14B0.9700
P1—O131.589 (2)C15—H15A0.9700
P1—O141.600 (2)C15—H15B0.9700
P1—O121.601 (2)C16—C171.507 (4)
O1—C11.122 (4)C16—H16A0.9700
O2—C21.148 (4)C16—H16B0.9700
O3—C31.137 (3)C17—H17A0.9700
O4—C41.135 (4)C17—H17B0.9700
C2—Ru1—C390.61 (12)C12—O12—P1124.95 (18)
C2—Ru1—C188.67 (12)C14—O13—P1126.29 (18)
C3—Ru1—C1176.82 (11)C16—O14—P1120.43 (17)
C2—Ru1—P1106.42 (9)O1—C1—Ru1173.4 (3)
C3—Ru1—P188.17 (8)O2—C2—Ru1176.4 (3)
C1—Ru1—P189.06 (8)O3—C3—Ru1173.4 (2)
C2—Ru1—Ru299.93 (8)O4—C4—Ru2173.8 (3)
C3—Ru1—Ru291.10 (8)O5—C5—Ru2178.8 (3)
C1—Ru1—Ru292.08 (8)O6—C6—Ru2172.8 (3)
P1—Ru1—Ru2153.641 (19)O7—C7—Ru2179.6 (3)
C2—Ru1—Ru3159.81 (8)O8—C8—Ru3173.9 (3)
C3—Ru1—Ru393.38 (8)O9—C9—Ru3178.8 (3)
C1—Ru1—Ru388.35 (8)O10—C10—Ru3173.8 (3)
P1—Ru1—Ru393.50 (2)O11—C11—Ru3178.3 (3)
Ru2—Ru1—Ru360.236 (9)O12—C12—C13109.3 (2)
C5—Ru2—C7106.72 (13)O12—C12—H12A109.8
C5—Ru2—C690.60 (12)C13—C12—H12A109.8
C7—Ru2—C693.05 (12)O12—C12—H12B109.8
C5—Ru2—C489.78 (13)C13—C12—H12B109.8
C7—Ru2—C490.49 (12)H12A—C12—H12B108.3
C6—Ru2—C4176.17 (12)C12—C13—Cl1112.2 (2)
C5—Ru2—Ru197.66 (9)C12—C13—H13A109.2
C7—Ru2—Ru1155.59 (9)Cl1—C13—H13A109.2
C6—Ru2—Ru187.85 (9)C12—C13—H13B109.2
C4—Ru2—Ru188.32 (9)Cl1—C13—H13B109.2
C5—Ru2—Ru3157.76 (9)H13A—C13—H13B107.9
C7—Ru2—Ru395.47 (9)O13—C14—C15108.5 (2)
C6—Ru2—Ru386.84 (8)O13—C14—H14A110.0
C4—Ru2—Ru391.37 (9)C15—C14—H14A110.0
Ru1—Ru2—Ru360.191 (8)O13—C14—H14B110.0
C9—Ru3—C11103.01 (12)C15—C14—H14B110.0
C9—Ru3—C888.67 (12)H14A—C14—H14B108.4
C11—Ru3—C890.45 (12)C14—C15—Cl2112.2 (2)
C9—Ru3—C1091.35 (12)C14—C15—H15A109.2
C11—Ru3—C1092.68 (12)Cl2—C15—H15A109.2
C8—Ru3—C10176.78 (12)C14—C15—H15B109.2
C9—Ru3—Ru1101.60 (8)Cl2—C15—H15B109.2
C11—Ru3—Ru1155.38 (9)H15A—C15—H15B107.9
C8—Ru3—Ru190.80 (9)O14—C16—C17107.3 (2)
C10—Ru3—Ru186.04 (8)O14—C16—H16A110.2
C9—Ru3—Ru2161.17 (8)C17—C16—H16A110.2
C11—Ru3—Ru295.82 (9)O14—C16—H16B110.2
C8—Ru3—Ru291.17 (9)C17—C16—H16B110.2
C10—Ru3—Ru287.77 (9)H16A—C16—H16B108.5
Ru1—Ru3—Ru259.573 (8)C16—C17—Cl3110.5 (2)
O13—P1—O1498.19 (10)C16—C17—H17A109.5
O13—P1—O12108.50 (12)Cl3—C17—H17A109.5
O14—P1—O12104.15 (11)C16—C17—H17B109.5
O13—P1—Ru1113.83 (8)Cl3—C17—H17B109.5
O14—P1—Ru1120.97 (8)H17A—C17—H17B108.1
O12—P1—Ru1110.01 (8)
C2—Ru1—Ru2—C51.98 (12)C4—Ru2—Ru3—C988.2 (3)
C3—Ru1—Ru2—C588.83 (12)Ru1—Ru2—Ru3—C90.9 (3)
C1—Ru1—Ru2—C591.00 (12)C5—Ru2—Ru3—C11175.3 (3)
P1—Ru1—Ru2—C5176.92 (10)C7—Ru2—Ru3—C111.28 (12)
Ru3—Ru1—Ru2—C5177.91 (9)C6—Ru2—Ru3—C1191.49 (12)
C2—Ru1—Ru2—C7179.0 (2)C4—Ru2—Ru3—C1191.90 (12)
C3—Ru1—Ru2—C788.2 (2)Ru1—Ru2—Ru3—C11179.18 (9)
C1—Ru1—Ru2—C792.0 (2)C5—Ru2—Ru3—C884.8 (3)
P1—Ru1—Ru2—C70.1 (2)C7—Ru2—Ru3—C891.85 (13)
Ru3—Ru1—Ru2—C75.1 (2)C6—Ru2—Ru3—C80.91 (12)
C2—Ru1—Ru2—C688.33 (12)C4—Ru2—Ru3—C8177.52 (12)
C3—Ru1—Ru2—C6179.15 (11)Ru1—Ru2—Ru3—C890.24 (9)
C1—Ru1—Ru2—C60.68 (11)C5—Ru2—Ru3—C1092.2 (3)
P1—Ru1—Ru2—C692.76 (9)C7—Ru2—Ru3—C1091.19 (12)
Ru3—Ru1—Ru2—C687.59 (9)C6—Ru2—Ru3—C10176.05 (11)
C2—Ru1—Ru2—C491.53 (12)C4—Ru2—Ru3—C100.56 (12)
C3—Ru1—Ru2—C40.72 (11)Ru1—Ru2—Ru3—C1086.72 (8)
C1—Ru1—Ru2—C4179.46 (12)C5—Ru2—Ru3—Ru15.5 (2)
P1—Ru1—Ru2—C487.38 (10)C7—Ru2—Ru3—Ru1177.90 (9)
Ru3—Ru1—Ru2—C492.55 (9)C6—Ru2—Ru3—Ru189.33 (9)
C2—Ru1—Ru2—Ru3175.93 (9)C4—Ru2—Ru3—Ru187.28 (9)
C3—Ru1—Ru2—Ru393.26 (8)C2—Ru1—P1—O13117.48 (13)
C1—Ru1—Ru2—Ru386.91 (8)C3—Ru1—P1—O13152.42 (12)
P1—Ru1—Ru2—Ru35.17 (4)C1—Ru1—P1—O1329.15 (12)
C2—Ru1—Ru3—C9168.0 (3)Ru2—Ru1—P1—O1363.64 (10)
C3—Ru1—Ru3—C990.97 (12)Ru3—Ru1—P1—O1359.14 (9)
C1—Ru1—Ru3—C986.36 (12)C2—Ru1—P1—O140.96 (13)
P1—Ru1—Ru3—C92.60 (9)C3—Ru1—P1—O1491.05 (12)
Ru2—Ru1—Ru3—C9179.70 (9)C1—Ru1—P1—O1487.38 (12)
C2—Ru1—Ru3—C1113.7 (3)Ru2—Ru1—P1—O14179.83 (8)
C3—Ru1—Ru3—C1187.4 (2)Ru3—Ru1—P1—O14175.67 (9)
C1—Ru1—Ru3—C1195.3 (2)C2—Ru1—P1—O12120.51 (12)
P1—Ru1—Ru3—C11175.7 (2)C3—Ru1—P1—O1230.41 (12)
Ru2—Ru1—Ru3—C112.0 (2)C1—Ru1—P1—O12151.16 (12)
C2—Ru1—Ru3—C879.2 (3)Ru2—Ru1—P1—O1258.37 (10)
C3—Ru1—Ru3—C8179.78 (11)Ru3—Ru1—P1—O1262.86 (9)
C1—Ru1—Ru3—C82.45 (12)O13—P1—O12—C1249.8 (2)
P1—Ru1—Ru3—C891.41 (9)O14—P1—O12—C1254.1 (2)
Ru2—Ru1—Ru3—C890.89 (9)Ru1—P1—O12—C12174.9 (2)
C2—Ru1—Ru3—C10101.4 (3)O14—P1—O13—C1441.8 (3)
C3—Ru1—Ru3—C100.41 (11)O12—P1—O13—C1466.2 (3)
C1—Ru1—Ru3—C10176.92 (11)Ru1—P1—O13—C14171.0 (2)
P1—Ru1—Ru3—C1087.96 (9)O13—P1—O14—C16174.3 (2)
Ru2—Ru1—Ru3—C1089.74 (9)O12—P1—O14—C1662.8 (2)
C2—Ru1—Ru3—Ru211.7 (2)Ru1—P1—O14—C1661.5 (2)
C3—Ru1—Ru3—Ru289.33 (8)P1—O12—C12—C13162.5 (2)
C1—Ru1—Ru3—Ru293.34 (8)O12—C12—C13—Cl171.2 (3)
P1—Ru1—Ru3—Ru2177.703 (19)P1—O13—C14—C15148.7 (2)
C5—Ru2—Ru3—C94.6 (4)O13—C14—C15—Cl271.2 (3)
C7—Ru2—Ru3—C9178.8 (3)P1—O14—C16—C17166.17 (19)
C6—Ru2—Ru3—C988.4 (3)O14—C16—C17—Cl364.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O4i0.972.583.297 (4)131
C17—H17B···O5ii0.972.543.307 (4)136
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ru3(C6H12Cl3O3P)(CO)11]
Mr880.80
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.8592 (9), 12.5979 (14), 14.8393 (17)
α, β, γ (°)109.442 (3), 93.791 (3), 90.763 (3)
V3)1381.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.03
Crystal size (mm)0.20 × 0.19 × 0.03
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.691, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
32458, 11981, 9935
Rint0.037
(sin θ/λ)max1)0.808
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.120, 1.07
No. of reflections11981
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.36, 1.36

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O4i0.97002.58003.297 (4)131.00
C17—H17B···O5ii0.97002.54003.307 (4)136.00
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: B-6034-2009. On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors gratefully acknowledge funding from the Malaysian Government and Universiti Sains Malaysia (USM) under the University Research Grant 1001/PJJAUH/811115. SSG thanks USM for a post-doctoral fellowship. HKF and CSY thank USM for the Research University Golden Goose Grant 1001/PFIZIK/811012 and CSY also thanks USM for the award of a USM Fellowship.

References

First citationBruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988a). J. Organomet. Chem. 347, 181–205.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Liddell, M. J., Shawkataly, O. bin, Hughes, C. A., Skelton, B. W. & White, A. H. (1988b). J. Organomet. Chem. 347, 207–235.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Nicholson, B. K. & Williams, M. L. (1987). Inorg. Synth. 26, 273.  Google Scholar
First citationBruce, M. I., Shawkataly, O. bin & Williams, M. L. (1985). J. Organomet. Chem. 287, 127–131.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m223–m224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Teoh, S. G. & Fun, H.-K. (1991). Z. Kristallogr. 194, 193–198.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1191-m1192
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds