metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Racemic tri­carbonyl[(4a,5,6,7,8,8a-η)-2-phenyl-3,4-di­hydro-2H-1-benzo­pyran]chromium(0)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa, and bOrganic Chemistry, Department of Chemisry, Lund University, PO Box 124, S-221 00 Lund, Sweden
*Correspondence e-mail: bezuidbc.sci@ufs.ac.za

(Received 8 July 2010; accepted 3 August 2010; online 11 August 2010)

The title compound, [Cr(C15H14O)(CO)3], displays a distorted envelope configuration of the dihydro­pyrane ring. The dihedral angle between the phenyl and phenyl­ene rings is 50.63 (4)°. The Cr0 atom is coordinated by three CO groups and the phenyl­ene ring of the flavan ligand in an η6 mode, with a common arene-to-metal distance

Related literature

For general background to chromium(0) complexes of the type [Cr(flav)(CO)3] (flav = flavan, flavone or isoflavone ligand), see: Muschalek et al. (2007[Muschalek, B., Weidner, I. & Butenschön, H. (2007). J. Organomet. Chem. 692, 2415-2424.]). For related structures, see: van Tonder et al. (2009a[Tonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009a). Acta Cryst. E65, m1343.],b[Tonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009b). Acta Cryst. E65, m1346.]). For the synthesis, see: Müller et al. (1999[Müller, T. J. J., Ansorge, M. & Polburn, K. (1999). J. Organomet. Chem. 578, 252-259.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr(C15H14O)(CO)3]

  • Mr = 346.29

  • Monoclinic, P 21 /c

  • a = 12.0275 (2) Å

  • b = 13.1454 (2) Å

  • c = 10.4473 (2) Å

  • β = 111.717 (1)°

  • V = 1534.55 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 173 K

  • 0.46 × 0.34 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.766, Tmax = 0.938

  • 20468 measured reflections

  • 5342 independent reflections

  • 3728 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 0.95

  • 5342 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

C5—Cr 2.1936 (18)
C6—Cr 2.2163 (19)
C7—Cr 2.2087 (19)
C8—Cr 2.2251 (17)
C9—Cr 2.2773 (17)
C10—Cr 2.2532 (17)
C11—Cr 1.8353 (19)
C12—Cr 1.8298 (19)
C13—Cr 1.8399 (17)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound forms part of a series of chromium(0) complexes of the type [Cr(flav)(CO)3] (flav = flavan, flavone or isoflavone ligand) (van Tonder et al., 2009a,b). Our interest in this type of chromium(0) complexes is partly due to their importance in organic synthesis, as noted earlier (Muschalek et al., 2007).

As illustrated in Fig. 1, the Cr(CO)3 group coordinates to the phenylene ring of the flavanoid backbone (Table 1). The distance between the Cr0 atom and the centroid of the A-η6-coordinated arene ring is 1.731 (1) Å (r.m.s of fitted atoms C5– C10 = 0.0186Å). Molecular distortion is displayed by the twisted flavan backbone. Atoms C4 and O5 is essentially in the plane of the coordinated arene ring (r.m.s of atoms C4–C10 and O5 = 0.0202Å), while atoms C2 and C3 are respectively displaced by -0.244 (2) and 0.478 (2) Å from the plane formed by atoms C4–C10 and O5. This distortion is a result of the expected envelope configuration in the dihydropyran ring. In turn the phenyl ring is twisted away from the plane of atoms C4–C10 and O5, with a dihedral angle of 50.88 (4)°. The crystal packing displays an intermolecular C—H···π soft contact [H···centroid distance = 2.92 Å] between the phenyl ring of one molecule and the arene ring of a neighbouring molecule (Fig. 2). The crystal packing is also stabilized by a C—H···O soft contact between atoms H8 and O5, with a distance of 2.57 Å and a C8—H8···O5 angle of 140°.

Related literature top

For general background to chromium(0) complexes of the type [Cr(flav)(CO)3] (flav = flavan, flavone or isoflavone ligand), see: Muschalek et al. (2007). For related structures, see: van Tonder et al. (2009a,b). For the synthesis, see: Müller et al. (1999).

Experimental top

Flavan was synthezised via H2SO4 catalyzed hydrogenation (5 bar) over 10% Pd/C from flavan-4-one [flavan-4-one (2.00 g, 8.9 mmol), 10 % Pd/C (0.10 g), 3 M H2SO4 (1 ml), EtOH (50 ml)]. Purification by means of flash column-chromatography yielded flavan (0.94 g, 49.9%) as a colourless oil. Rf 0.77 (H:A, 8:2).

Preparation of the title compound was based on a method described by Müller et al. (1999). A solution of flavan (0.51 g, 2.4 mmol) and Cr(CO)6 (0.53 g, 2.4 mmol) in Bu2O:THF (9:1, 10 ml per 100 mg) was degassed with argon, using standard Schlenk techniques, and refluxed (48 h) under an oxygen free atmosphere. The reaction mixture was cooled to room temperature and the solvent evaporated in vacuo. Purification through flash column-chromatography yielded tricarbonyl(A-η6flavan)chromium(0) (0.08 g, 9.2%) as a yellow solid. Recrystallization from diethyl ether yielded yellow cuboidal crystals. Rf 0.23 (hexane:acetone, 8:2); Mp 170.4°C.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 (aromatic), 0.98 (CH) and 0.97 (CH2) Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

The title compound forms part of a series of chromium(0) complexes of the type [Cr(flav)(CO)3] (flav = flavan, flavone or isoflavone ligand) (van Tonder et al., 2009a,b). Our interest in this type of chromium(0) complexes is partly due to their importance in organic synthesis, as noted earlier (Muschalek et al., 2007).

As illustrated in Fig. 1, the Cr(CO)3 group coordinates to the phenylene ring of the flavanoid backbone (Table 1). The distance between the Cr0 atom and the centroid of the A-η6-coordinated arene ring is 1.731 (1) Å (r.m.s of fitted atoms C5– C10 = 0.0186Å). Molecular distortion is displayed by the twisted flavan backbone. Atoms C4 and O5 is essentially in the plane of the coordinated arene ring (r.m.s of atoms C4–C10 and O5 = 0.0202Å), while atoms C2 and C3 are respectively displaced by -0.244 (2) and 0.478 (2) Å from the plane formed by atoms C4–C10 and O5. This distortion is a result of the expected envelope configuration in the dihydropyran ring. In turn the phenyl ring is twisted away from the plane of atoms C4–C10 and O5, with a dihedral angle of 50.88 (4)°. The crystal packing displays an intermolecular C—H···π soft contact [H···centroid distance = 2.92 Å] between the phenyl ring of one molecule and the arene ring of a neighbouring molecule (Fig. 2). The crystal packing is also stabilized by a C—H···O soft contact between atoms H8 and O5, with a distance of 2.57 Å and a C8—H8···O5 angle of 140°.

For general background to chromium(0) complexes of the type [Cr(flav)(CO)3] (flav = flavan, flavone or isoflavone ligand), see: Muschalek et al. (2007). For related structures, see: van Tonder et al. (2009a,b). For the synthesis, see: Müller et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the crystal packing in the unit cell. [Symmetry codes: (i) 1-x, 1/2+y, 1/2-z; (ii) x, 1/2-y, 1/2+z.]
tricarbonyl[(4a,5,6,7,8,8a-η)-2-phenyl-3,4-dihydro-2H-1- benzopyran]chromium(0) top
Crystal data top
[Cr(C15H14O)(CO)3]F(000) = 712
Mr = 346.29Dx = 1.499 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 4557 reflections
a = 12.0275 (2) Åθ = 2.4–30.0°
b = 13.1454 (2) ŵ = 0.76 mm1
c = 10.4473 (2) ÅT = 173 K
β = 111.717 (1)°Plate, yellow
V = 1534.55 (5) Å30.46 × 0.34 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3728 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 32.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1714
Tmin = 0.766, Tmax = 0.938k = 1919
20468 measured reflectionsl = 1415
5342 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0469P)2]
where P = (Fo2 + 2Fc2)/3
5342 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cr(C15H14O)(CO)3]V = 1534.55 (5) Å3
Mr = 346.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0275 (2) ŵ = 0.76 mm1
b = 13.1454 (2) ÅT = 173 K
c = 10.4473 (2) Å0.46 × 0.34 × 0.11 mm
β = 111.717 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5342 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3728 reflections with I > 2σ(I)
Tmin = 0.766, Tmax = 0.938Rint = 0.050
20468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.95Δρmax = 0.67 e Å3
5342 reflectionsΔρmin = 0.32 e Å3
208 parameters
Special details top

Experimental. The intensity data was collected on a Bruker APEXII CCD diffractometer using a frame width of 0.5° covering up to θ = 32.06° with 99.8% completeness accomplished.

Spectroscopic data for the flavan ligand: 1H NMR (CDCl3, 600 MHz) δ p.p.m. 7.46 – 7.30 (5H, m, Ar—H), 7.21 – 7.10 (2H, m, Ar—H), 6.94 – 6.86 (2H, m, Ar—H), 5.08 (1H, dd, J = 2.45, 9.98 Hz), 3.02 (1H, ddd, J = 6.03, 11.02, 16.46 Hz), 2.81 (1H, ddd, J = 3.58, 4.71, 16.46 Hz), 2.27 – 2.04 (2H, m);

13C NMR (600 MHz, CDCl3) δ p.p.m. 25.18, 30.06, 77.82, 117.04, 120.43, 121.93, 126.10, 127.45, 127.91, 128.61, 129.63, 141.87, 155.25.

Spectroscopic data for the title compound, tricarbonyl(A-η6flavan)chromium(0): Note: A, B and C-ring labelling refers to the benzene, phenyl and dihydropyrane rings respectively. 1H NMR (600 MHz, CDCl3) δ p.p.m. 7.46 (2H, d, J = 7.30 Hz), 7.40 (2H, dd, J = 7.24, 7.30 Hz), 7.37 – 7.35 (1H, m), 5.56 (1H, d, J = 6.03 Hz), 5.48 (1H, dd, J = 6.02, 6.69 Hz), 5.20 (1H, d, J = 6.69 Hz), 4.90 – 4.88 (2H, m), 3.00 (1H, ddd, J = 5.27, 12.42, 15.95 Hz), 2.64 (1H, dd, J = 4.14, 15.95 Hz), 2.31 (1H, ddd, J = 4.14, 12.42, 13.93 Hz), 2.17 (1H, dd, J = 5.27, 13.93 Hz);

13C NMR (600 MHz, CDCl3) δ p.p.m. 25.94 (C-4), 29.67 (C-3), 80.00 (C-2/6/8), 80.29 (C-2/6/8), 85.87 (C-2/6/8), 94.50 (C-5/7), 95.60 (C-5/7), 126.49 (C-2' and C-6'), 128.80, 128.89, 139.71, 234.06 (–Cr(CO)3);

MS m/z 346 (M+, 39.0), 290 (2.7), 263 (22.1), 222 (56.9), 193 (12.0), 167 (100.0), 158 (99.8), 149 (68.9),129 (1.9), 127 (13.0), 121 (27.0), 106 (31.3), 104 (4.8), 103 (7.8).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1'0.42382 (14)0.18308 (12)0.19968 (17)0.0245 (3)
C20.50936 (14)0.20966 (13)0.12917 (17)0.0263 (3)
H20.46430.24200.04050.032*
C2'0.32347 (17)0.24327 (15)0.1760 (2)0.0372 (4)
H2'0.30950.29860.11670.045*
C30.60863 (15)0.27990 (13)0.21249 (18)0.0293 (4)
H3A0.65260.24910.30130.035*
H3B0.57460.34330.22850.035*
C3'0.24388 (17)0.22168 (16)0.2401 (2)0.0405 (5)
H3'0.17720.26290.22400.049*
C40.69396 (15)0.30169 (12)0.13848 (18)0.0269 (3)
H4A0.65520.34570.06000.032*
H4B0.76450.33640.20050.032*
C4'0.26295 (15)0.13974 (15)0.32735 (18)0.0327 (4)
H4'0.20840.12450.36860.039*
C5'0.36356 (16)0.08021 (13)0.35341 (18)0.0295 (4)
H5'0.37730.02540.41350.035*
C50.83325 (14)0.19620 (13)0.05541 (16)0.0261 (3)
H50.88170.25310.06540.031*
C6'0.44412 (14)0.10155 (12)0.29068 (18)0.0260 (3)
H6'0.51190.06140.30940.031*
C60.86366 (15)0.10536 (13)0.00632 (17)0.0290 (4)
H60.92930.10280.02040.035*
C70.79393 (15)0.01836 (14)0.00212 (18)0.0309 (4)
H70.81470.04270.03220.037*
C80.69312 (14)0.02274 (13)0.03445 (17)0.0278 (4)
H80.64880.03570.03190.033*
C90.65942 (13)0.11637 (12)0.07510 (16)0.0223 (3)
C100.72998 (13)0.20345 (12)0.09035 (15)0.0219 (3)
C110.79274 (15)0.03598 (13)0.34020 (18)0.0297 (4)
C120.96333 (16)0.02379 (14)0.26452 (19)0.0334 (4)
C130.95879 (14)0.16059 (13)0.34028 (17)0.0267 (3)
O10.75227 (13)0.00961 (11)0.41970 (15)0.0468 (4)
O21.03289 (14)0.08866 (11)0.29813 (18)0.0576 (4)
O31.02610 (11)0.21213 (11)0.42255 (14)0.0422 (3)
O50.55780 (9)0.11377 (8)0.10382 (12)0.0260 (2)
Cr0.85184 (2)0.078021 (19)0.21024 (3)0.02026 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1'0.0243 (7)0.0262 (8)0.0257 (8)0.0011 (6)0.0126 (6)0.0017 (6)
C20.0242 (8)0.0296 (8)0.0261 (8)0.0011 (6)0.0106 (6)0.0006 (7)
C2'0.0396 (10)0.0401 (10)0.0380 (10)0.0150 (8)0.0215 (8)0.0135 (8)
C30.0306 (9)0.0270 (8)0.0338 (9)0.0040 (6)0.0160 (7)0.0058 (7)
C3'0.0318 (9)0.0562 (12)0.0377 (10)0.0187 (9)0.0179 (8)0.0066 (9)
C40.0286 (8)0.0225 (7)0.0312 (9)0.0040 (6)0.0131 (7)0.0017 (7)
C4'0.0264 (8)0.0472 (11)0.0288 (9)0.0049 (7)0.0152 (7)0.0042 (8)
C5'0.0336 (9)0.0287 (8)0.0288 (9)0.0049 (7)0.0147 (7)0.0016 (7)
C50.0237 (8)0.0346 (9)0.0218 (8)0.0047 (6)0.0105 (6)0.0040 (7)
C6'0.0226 (8)0.0257 (8)0.0296 (9)0.0014 (6)0.0094 (6)0.0017 (7)
C60.0251 (8)0.0436 (10)0.0229 (8)0.0020 (7)0.0140 (6)0.0025 (7)
C70.0283 (8)0.0389 (10)0.0277 (9)0.0027 (7)0.0131 (7)0.0133 (8)
C80.0247 (8)0.0316 (9)0.0283 (8)0.0079 (6)0.0112 (7)0.0119 (7)
C90.0182 (7)0.0304 (8)0.0189 (7)0.0032 (6)0.0075 (6)0.0037 (6)
C100.0212 (7)0.0267 (8)0.0181 (7)0.0016 (6)0.0076 (6)0.0020 (6)
C110.0268 (8)0.0330 (9)0.0288 (9)0.0007 (7)0.0096 (7)0.0045 (7)
C120.0334 (9)0.0314 (9)0.0372 (10)0.0039 (7)0.0150 (8)0.0010 (8)
C130.0208 (7)0.0347 (9)0.0263 (8)0.0028 (6)0.0106 (6)0.0032 (7)
O10.0496 (9)0.0583 (9)0.0418 (8)0.0003 (7)0.0278 (7)0.0146 (7)
O20.0532 (10)0.0460 (9)0.0714 (12)0.0253 (7)0.0206 (9)0.0070 (8)
O30.0290 (7)0.0562 (8)0.0387 (7)0.0062 (6)0.0091 (6)0.0196 (7)
O50.0200 (5)0.0275 (6)0.0347 (6)0.0051 (4)0.0149 (5)0.0083 (5)
Cr0.01890 (12)0.02262 (13)0.02079 (13)0.00077 (9)0.00912 (9)0.00132 (10)
Geometric parameters (Å, º) top
C1'—C2'1.387 (2)C5—H50.9300
C1'—C6'1.393 (2)C6'—H6'0.9300
C1'—C21.511 (2)C6—C71.401 (2)
C2—O51.4535 (19)C6—H60.9300
C2—C31.506 (2)C7—C81.401 (2)
C2—H20.9800C7—H70.9300
C2'—C3'1.385 (3)C8—C91.410 (2)
C2'—H2'0.9300C8—H80.9300
C3—C41.523 (2)C9—O51.3627 (18)
C3—H3A0.9700C9—C101.399 (2)
C3—H3B0.9700C11—O11.160 (2)
C3'—C4'1.374 (3)C12—O21.155 (2)
C3'—H3'0.9300C13—O31.157 (2)
C4—C101.506 (2)C5—Cr2.1936 (18)
C4—H4A0.9700C6—Cr2.2163 (19)
C4—H4B0.9700C7—Cr2.2087 (19)
C4'—C5'1.381 (2)C8—Cr2.2251 (17)
C4'—H4'0.9300C9—Cr2.2773 (17)
C5'—C6'1.384 (2)C10—Cr2.2532 (17)
C5'—H5'0.9300C11—Cr1.8353 (19)
C5—C61.401 (2)C12—Cr1.8298 (19)
C5—C101.421 (2)C13—Cr1.8399 (17)
C2'—C1'—C6'118.79 (15)C9—C8—Cr73.78 (9)
C2'—C1'—C2119.07 (15)C7—C8—H8120.2
C6'—C1'—C2122.11 (14)C9—C8—H8120.2
O5—C2—C3110.59 (13)Cr—C8—H8127.0
O5—C2—C1'106.22 (13)O5—C9—C10123.47 (14)
C3—C2—C1'113.41 (14)O5—C9—C8115.20 (14)
O5—C2—H2108.8C10—C9—C8121.26 (14)
C3—C2—H2108.8O5—C9—Cr130.29 (11)
C1'—C2—H2108.8C10—C9—Cr71.08 (9)
C3'—C2'—C1'120.57 (17)C8—C9—Cr69.75 (9)
C3'—C2'—H2'119.7C9—C10—C5117.84 (15)
C1'—C2'—H2'119.7C9—C10—C4120.15 (13)
C2—C3—C4111.16 (14)C5—C10—C4121.99 (14)
C2—C3—H3A109.4C9—C10—Cr72.96 (9)
C4—C3—H3A109.4C5—C10—Cr69.09 (9)
C2—C3—H3B109.4C4—C10—Cr130.54 (11)
C4—C3—H3B109.4O1—C11—Cr178.15 (15)
H3A—C3—H3B108.0O2—C12—Cr179.38 (19)
C4'—C3'—C2'120.36 (17)O3—C13—Cr179.64 (17)
C4'—C3'—H3'119.8C9—O5—C2118.10 (12)
C2'—C3'—H3'119.8C12—Cr—C1189.46 (8)
C10—C4—C3109.83 (13)C12—Cr—C1388.32 (8)
C10—C4—H4A109.7C11—Cr—C1389.30 (8)
C3—C4—H4A109.7C12—Cr—C5127.56 (7)
C10—C4—H4B109.7C11—Cr—C5142.85 (7)
C3—C4—H4B109.7C13—Cr—C588.82 (8)
H4A—C4—H4B108.2C12—Cr—C788.52 (8)
C3'—C4'—C5'119.60 (16)C11—Cr—C7124.86 (8)
C3'—C4'—H4'120.2C13—Cr—C7145.65 (7)
C5'—C4'—H4'120.2C5—Cr—C766.58 (7)
C4'—C5'—C6'120.51 (16)C12—Cr—C696.67 (8)
C4'—C5'—H5'119.7C11—Cr—C6160.06 (7)
C6'—C5'—H5'119.7C13—Cr—C6109.76 (7)
C6—C5—C10121.51 (15)C5—Cr—C637.03 (6)
C6—C5—Cr72.37 (10)C7—Cr—C636.93 (7)
C10—C5—Cr73.65 (9)C12—Cr—C8108.88 (8)
C6—C5—H5119.2C11—Cr—C893.63 (8)
C10—C5—H5119.2C13—Cr—C8162.56 (7)
Cr—C5—H5126.7C5—Cr—C878.49 (7)
C5'—C6'—C1'120.15 (15)C7—Cr—C836.83 (6)
C5'—C6'—H6'119.9C6—Cr—C866.43 (7)
C1'—C6'—H6'119.9C12—Cr—C10163.51 (7)
C5—C6—C7119.17 (15)C11—Cr—C10106.33 (7)
C5—C6—Cr70.60 (9)C13—Cr—C1096.43 (7)
C7—C6—Cr71.24 (9)C5—Cr—C1037.25 (6)
C5—C6—H6120.4C7—Cr—C1078.64 (7)
C7—C6—H6120.4C6—Cr—C1066.85 (6)
Cr—C6—H6130.2C8—Cr—C1066.24 (6)
C8—C7—C6120.50 (16)C12—Cr—C9144.51 (7)
C8—C7—Cr72.22 (10)C11—Cr—C986.69 (7)
C6—C7—Cr71.83 (10)C13—Cr—C9126.85 (7)
C8—C7—H7119.8C5—Cr—C965.36 (6)
C6—C7—H7119.8C7—Cr—C965.51 (6)
Cr—C7—H7128.5C6—Cr—C977.30 (6)
C7—C8—C9119.50 (15)C8—Cr—C936.47 (6)
C7—C8—Cr70.95 (10)C10—Cr—C935.96 (5)

Experimental details

Crystal data
Chemical formula[Cr(C15H14O)(CO)3]
Mr346.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.0275 (2), 13.1454 (2), 10.4473 (2)
β (°) 111.717 (1)
V3)1534.55 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.46 × 0.34 × 0.11
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.766, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
20468, 5342, 3728
Rint0.050
(sin θ/λ)max1)0.747
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 0.95
No. of reflections5342
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SAINT-Plus (Bruker, 2007, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
C5—Cr2.1936 (18)C10—Cr2.2532 (17)
C6—Cr2.2163 (19)C11—Cr1.8353 (19)
C7—Cr2.2087 (19)C12—Cr1.8298 (19)
C8—Cr2.2251 (17)C13—Cr1.8399 (17)
C9—Cr2.2773 (17)
 

Acknowledgements

Financial assistance from the University of the Free State and SASOL to JHvT is gratefully acknowledged. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of SASOL. We would like to express our gratitude to the School of Chemistry at the University of the Witwaters­rand for the use of diffractometer.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMüller, T. J. J., Ansorge, M. & Polburn, K. (1999). J. Organomet. Chem. 578, 252–259.  Google Scholar
First citationMuschalek, B., Weidner, I. & Butenschön, H. (2007). J. Organomet. Chem. 692, 2415–2424.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009a). Acta Cryst. E65, m1343.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTonder, J. H. van, Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2009b). Acta Cryst. E65, m1346.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds