metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N-[(2-Oxido-1-naphth­yl)methyl­­idene]­serinato-κ3O,N,O′}(1,10-phenanthroline-κ2N,N′)copper(II)

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lilianzhi1963@yahoo.com.cn

(Received 29 March 2010; accepted 5 April 2010; online 10 April 2010)

In the title complex, [Cu(C14H11NO4)(C12H8N2)], the tridentate Schiff base ligand is derived from the condensation of 2-hydr­oxy-1-naphthaldehyde and L-serine. The CuII atom is five-coordinated by one N atom and two O atoms from the Schiff base ligand and by two N atoms from a 1,10-phenanthroline ligand in a distorted square-pyramidal geometry. In the crystal structure, the combination of inter­molecular O—H⋯O and C—H⋯O hydrogen bonds results in a two-dimensional network structure parallel to (001).

Related literature

For general background to Schiff base complexes, see: Garnovski et al. (1993[Garnovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Kalagouda et al. (2006[Kalagouda, B. G., Manjula, S. P., Ramesh, S. V., Rashmi, V. S. & Siddappa, A. P. (2006). Transition Met. Chem. 31, 580-585.]); Wang et al. (1999[Wang, R.-M., Hao, C.-J., Wang, Y.-P. & Li, S.-B. (1999). J. Mol. Catal. A Chem. 147, 173-178.]). For our previous work on amino Schiff base complexes, see: Qiu et al. (2008[Qiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745-m746.]); Wang et al. (2007[Wang, L., Dong, J.-F., Li, L.-Z., Li, L.-W. & Wang, D.-Q. (2007). Acta Cryst. E63, m1059-m1060.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H11NO4)(C12H8N2)]

  • Mr = 500.98

  • Monoclinic, P 21

  • a = 10.7302 (12) Å

  • b = 6.4687 (6) Å

  • c = 15.7930 (17) Å

  • β = 91.924 (1)°

  • V = 1095.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 298 K

  • 0.43 × 0.16 × 0.08 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.664, Tmax = 0.922

  • 5555 measured reflections

  • 3633 independent reflections

  • 3022 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.094

  • S = 0.97

  • 3633 reflections

  • 307 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1529 Friedel pairs

  • Flack parameter: −0.023 (17)

Table 1
Selected bond lengths (Å)

Cu1—N1 1.914 (3)
Cu1—N2 2.012 (4)
Cu1—N3 2.297 (4)
Cu1—O1 1.994 (3)
Cu1—O4 1.920 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 1.84 2.659 (5) 172
C25—H25⋯O2ii 0.93 2.63 3.454 (6) 148
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Amino acids are very important biomolecules because of their roles in biochemical reactions. Schiff base complexes have continued to play the role of the most important stereochemical models in main group and transition metal coordination chemistry with their easy preparation and structural variation (Garnovski et al., 1993). So efforts have been made to synthesize and characterize amino Schiff base complexes with transition metals, and more and more these new complexes have been reported (Kalagouda et al., 2006; Wang et al., 1999). As part of a series of our study (Qiu et al. 2008; Wang et al., 2007), we report here the synthesis and crystal structure of a new copper(II) complex with a tridentate Schiff base ligand derived from the condensation of 2-hydroxy-1-naphthaldehyde and L-serine.

The molecular structure of the title complex is shown in Fig. 1. The CuII atom is five-coordinated with two O atom and one N atom from a tridentate Schiff base ligand, and two N atoms from a 1,10-phenanthroline ligand, resulting in a distorted square-pyramidal geometry. O1, O4, N1 and N2 locate in a basal equatorial plane and N3 is at the apical position. The CuII atom deviates from the basal equatorial plane by 0.2005 (18) Å toward N3 atom, with a significantly longer Cu1—N3 bond distance [2.297 (4) Å] (Table 1). The apical Cu1—N3 bond deviates greatly from the right position to close the Cu1—N2 bond [N2—Cu1—N3 = 77.87 (14)°]. Additionally, the tridentate Schiff base ligand coordinates to the Cu atom, forming two chelating rings (Cu1, O1, C1, C2, N1 ring and Cu1, N1, C4, C5, C6, O4 ring). The two rings have dihedral angles of 10.84 (21) and 6.74 (21)° to the equatorial plane, respectively. The 1,10-phenanthroline chelating ring (Cu1, N2, C19, C20, N3) is almost perpendicular to the basal equatorial plane [dihedral angle = 85.91 (9)°]. In the crystal, the combination of intermolecular O—H···O and C—H···O hydrogen bonds (Table 2) leads to a two-dimensional network (Fig. 2).

Related literature top

For general background to Schiff base complexes, see: Garnovski et al. (1993); Kalagouda et al. (2006); Wang et al. (1999). For our previous work on amino Schiff base complexes, see: Qiu et al. (2008); Wang et al. (2007).

Experimental top

L-Serine (1 mmol, 105.1 mg) and potassium hydroxide (1 mmol, 56.1 mg) were dissovlved in hot methanol (5 ml) and added in portions to a methanol solution of 2-hydroxy-1-naphthaldehyde (1 mmol, 172.19 mg). The mixture was then stirred at 323 K for 2 h. Subsequently, an aqueous solution (2 ml) of cupric acetate monohydrate (1 mmol, 199.7 mg) was added dropwise and the mixture stirred for 3 h. Finally, a methanol solution (5 ml) of 1,10-phenanthroline (1 mmol, 198.2 mg) was added dropwise to the above solution and then stirred for 3 h. The solution was held at room temperature for 15 d, whereupon green needle crystals suitable for X-ray diffraction were obtained.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93–0.98 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O) for hydroxyl group.

Structure description top

Amino acids are very important biomolecules because of their roles in biochemical reactions. Schiff base complexes have continued to play the role of the most important stereochemical models in main group and transition metal coordination chemistry with their easy preparation and structural variation (Garnovski et al., 1993). So efforts have been made to synthesize and characterize amino Schiff base complexes with transition metals, and more and more these new complexes have been reported (Kalagouda et al., 2006; Wang et al., 1999). As part of a series of our study (Qiu et al. 2008; Wang et al., 2007), we report here the synthesis and crystal structure of a new copper(II) complex with a tridentate Schiff base ligand derived from the condensation of 2-hydroxy-1-naphthaldehyde and L-serine.

The molecular structure of the title complex is shown in Fig. 1. The CuII atom is five-coordinated with two O atom and one N atom from a tridentate Schiff base ligand, and two N atoms from a 1,10-phenanthroline ligand, resulting in a distorted square-pyramidal geometry. O1, O4, N1 and N2 locate in a basal equatorial plane and N3 is at the apical position. The CuII atom deviates from the basal equatorial plane by 0.2005 (18) Å toward N3 atom, with a significantly longer Cu1—N3 bond distance [2.297 (4) Å] (Table 1). The apical Cu1—N3 bond deviates greatly from the right position to close the Cu1—N2 bond [N2—Cu1—N3 = 77.87 (14)°]. Additionally, the tridentate Schiff base ligand coordinates to the Cu atom, forming two chelating rings (Cu1, O1, C1, C2, N1 ring and Cu1, N1, C4, C5, C6, O4 ring). The two rings have dihedral angles of 10.84 (21) and 6.74 (21)° to the equatorial plane, respectively. The 1,10-phenanthroline chelating ring (Cu1, N2, C19, C20, N3) is almost perpendicular to the basal equatorial plane [dihedral angle = 85.91 (9)°]. In the crystal, the combination of intermolecular O—H···O and C—H···O hydrogen bonds (Table 2) leads to a two-dimensional network (Fig. 2).

For general background to Schiff base complexes, see: Garnovski et al. (1993); Kalagouda et al. (2006); Wang et al. (1999). For our previous work on amino Schiff base complexes, see: Qiu et al. (2008); Wang et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound with hydrogen bonds shown as dashed lines.
{N-[(2-Oxido-1-naphthyl)methylidene]serinato- κ3O,N,O'}(1,10-phenanthroline- κ2N,N')copper(II) top
Crystal data top
[Cu(C14H11NO4)(C12H8N2)]F(000) = 514
Mr = 500.98Dx = 1.519 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 746 reflections
a = 10.7302 (12) Åθ = 3.3–25.2°
b = 6.4687 (6) ŵ = 1.04 mm1
c = 15.7930 (17) ÅT = 298 K
β = 91.924 (1)°Needle, green
V = 1095.6 (2) Å30.43 × 0.16 × 0.08 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3633 independent reflections
Radiation source: fine-focus sealed tube3022 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.664, Tmax = 0.922k = 77
5555 measured reflectionsl = 1815
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0491P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
3633 reflectionsΔρmax = 0.41 e Å3
307 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), with 1529 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.023 (17)
Crystal data top
[Cu(C14H11NO4)(C12H8N2)]V = 1095.6 (2) Å3
Mr = 500.98Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.7302 (12) ŵ = 1.04 mm1
b = 6.4687 (6) ÅT = 298 K
c = 15.7930 (17) Å0.43 × 0.16 × 0.08 mm
β = 91.924 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3633 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3022 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 0.922Rint = 0.031
5555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.41 e Å3
S = 0.97Δρmin = 0.25 e Å3
3633 reflectionsAbsolute structure: Flack (1983), with 1529 Friedel pairs
307 parametersAbsolute structure parameter: 0.023 (17)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.85224 (4)0.14981 (9)0.75536 (3)0.04385 (16)
N10.6939 (3)0.2834 (6)0.7406 (2)0.0385 (8)
N21.0094 (3)0.0200 (6)0.7612 (2)0.0472 (9)
N30.9778 (3)0.3251 (6)0.6648 (2)0.0455 (9)
O10.7806 (3)0.0536 (5)0.6722 (2)0.0536 (8)
O20.6057 (4)0.1294 (5)0.5986 (2)0.0629 (10)
O30.5115 (3)0.4941 (6)0.6180 (2)0.0682 (10)
H30.54630.60510.61030.102*
O40.8869 (3)0.2791 (5)0.86299 (18)0.0534 (8)
C10.6697 (4)0.0168 (7)0.6467 (3)0.0455 (11)
C20.6124 (3)0.1876 (7)0.6743 (2)0.0394 (11)
H20.53110.15890.69830.047*
C30.5927 (5)0.3310 (8)0.5981 (3)0.0497 (12)
H3A0.67230.38710.58200.060*
H3B0.55780.25320.55050.060*
C40.6521 (4)0.4288 (7)0.7864 (3)0.0406 (10)
H40.57150.47510.77380.049*
C50.7188 (4)0.5272 (7)0.8559 (3)0.0412 (10)
C60.8261 (4)0.4355 (8)0.8927 (3)0.0463 (11)
C70.8738 (4)0.5219 (9)0.9718 (3)0.0568 (13)
H70.94100.45770.99970.068*
C80.8240 (4)0.6931 (9)1.0064 (3)0.0602 (15)
H80.85780.74311.05740.072*
C90.7211 (4)0.7988 (8)0.9669 (3)0.0524 (12)
C100.6680 (4)0.7142 (6)0.8910 (3)0.0434 (12)
C110.5671 (4)0.8226 (8)0.8529 (3)0.0534 (12)
H110.53000.77110.80320.064*
C120.5216 (5)1.0034 (8)0.8871 (3)0.0596 (13)
H120.45401.07020.86070.071*
C130.5764 (5)1.0859 (8)0.9608 (3)0.0642 (15)
H130.54671.20850.98330.077*
C140.6735 (5)0.9856 (9)0.9992 (3)0.0636 (14)
H140.70991.04121.04840.076*
C151.0230 (5)0.1874 (8)0.8073 (3)0.0621 (14)
H150.96240.21910.84600.075*
C161.1243 (5)0.3193 (11)0.8008 (4)0.0776 (17)
H161.12980.43810.83390.093*
C171.2155 (5)0.2738 (9)0.7458 (4)0.0780 (18)
H171.28400.36080.74150.094*
C181.2056 (4)0.0959 (8)0.6958 (3)0.0564 (13)
C191.0996 (4)0.0292 (8)0.7055 (3)0.0481 (11)
C201.0833 (4)0.2127 (7)0.6554 (3)0.0429 (12)
C211.1751 (4)0.2679 (9)0.5972 (3)0.0548 (12)
C221.1553 (5)0.4525 (10)0.5521 (3)0.0694 (16)
H221.21400.49700.51410.083*
C231.0512 (5)0.5663 (8)0.5637 (3)0.0671 (15)
H231.03830.68910.53400.080*
C240.9638 (4)0.4976 (8)0.6204 (3)0.0552 (12)
H240.89240.57640.62740.066*
C251.2954 (4)0.0334 (11)0.6350 (4)0.0730 (17)
H251.36580.11470.62820.088*
C261.2811 (4)0.1357 (14)0.5886 (3)0.0708 (15)
H261.34090.16940.54960.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0443 (3)0.0443 (3)0.0434 (3)0.0024 (3)0.00652 (18)0.0022 (3)
N10.0436 (18)0.036 (2)0.0364 (18)0.0015 (16)0.0031 (15)0.0063 (16)
N20.050 (2)0.046 (2)0.046 (2)0.0002 (18)0.0006 (17)0.0024 (19)
N30.052 (2)0.042 (2)0.043 (2)0.0019 (19)0.0020 (16)0.0027 (18)
O10.0538 (19)0.048 (2)0.059 (2)0.0080 (16)0.0002 (16)0.0130 (17)
O20.075 (2)0.048 (2)0.066 (2)0.002 (2)0.0035 (19)0.0200 (19)
O30.068 (2)0.047 (2)0.089 (3)0.0030 (19)0.0033 (19)0.002 (2)
O40.0529 (17)0.063 (2)0.0442 (17)0.0077 (17)0.0007 (14)0.0051 (16)
C10.054 (3)0.040 (3)0.043 (2)0.006 (2)0.008 (2)0.006 (2)
C20.0393 (19)0.040 (3)0.039 (2)0.005 (2)0.0038 (16)0.011 (2)
C30.058 (3)0.046 (3)0.045 (3)0.006 (3)0.000 (2)0.002 (2)
C40.039 (2)0.041 (3)0.042 (2)0.002 (2)0.0012 (18)0.002 (2)
C50.046 (2)0.042 (3)0.036 (2)0.006 (2)0.0052 (19)0.004 (2)
C60.047 (2)0.053 (3)0.039 (2)0.007 (2)0.0077 (19)0.004 (2)
C70.051 (3)0.072 (4)0.047 (3)0.001 (3)0.003 (2)0.006 (3)
C80.066 (3)0.069 (5)0.045 (2)0.011 (3)0.002 (2)0.022 (3)
C90.057 (3)0.050 (3)0.051 (3)0.010 (2)0.012 (2)0.014 (2)
C100.054 (2)0.042 (3)0.036 (2)0.007 (2)0.0115 (19)0.0030 (18)
C110.064 (3)0.052 (3)0.045 (3)0.004 (3)0.011 (2)0.003 (2)
C120.073 (3)0.048 (3)0.058 (3)0.004 (3)0.018 (3)0.003 (3)
C130.085 (4)0.047 (4)0.061 (3)0.002 (3)0.024 (3)0.013 (2)
C140.075 (3)0.058 (4)0.058 (3)0.013 (3)0.010 (3)0.024 (3)
C150.072 (3)0.054 (3)0.060 (3)0.003 (3)0.012 (3)0.011 (3)
C160.087 (3)0.054 (4)0.090 (4)0.010 (4)0.035 (3)0.014 (4)
C170.057 (3)0.068 (4)0.106 (5)0.015 (3)0.031 (3)0.014 (3)
C180.041 (3)0.055 (3)0.071 (3)0.006 (2)0.012 (2)0.017 (3)
C190.039 (2)0.052 (3)0.053 (3)0.001 (2)0.005 (2)0.014 (2)
C200.037 (2)0.049 (3)0.043 (2)0.0048 (19)0.0044 (18)0.006 (2)
C210.048 (3)0.065 (3)0.052 (3)0.014 (3)0.008 (2)0.010 (3)
C220.076 (4)0.080 (4)0.053 (3)0.033 (3)0.008 (3)0.000 (3)
C230.087 (4)0.057 (4)0.057 (3)0.019 (3)0.008 (3)0.013 (2)
C240.060 (3)0.047 (3)0.058 (3)0.004 (2)0.010 (2)0.004 (2)
C250.041 (3)0.082 (5)0.097 (5)0.003 (3)0.009 (3)0.035 (4)
C260.049 (3)0.092 (4)0.072 (3)0.013 (4)0.018 (2)0.027 (5)
Geometric parameters (Å, º) top
Cu1—N11.914 (3)C9—C141.415 (7)
Cu1—N22.012 (4)C9—C101.419 (6)
Cu1—N32.297 (4)C10—C111.407 (6)
Cu1—O11.994 (3)C11—C121.385 (7)
Cu1—O41.920 (3)C11—H110.9300
N1—C41.278 (5)C12—C131.393 (7)
N1—C21.477 (5)C12—H120.9300
N2—C151.310 (6)C13—C141.353 (7)
N2—C191.367 (6)C13—H130.9300
N3—C241.324 (6)C14—H140.9300
N3—C201.358 (5)C15—C161.388 (7)
O1—C11.267 (5)C15—H150.9300
O2—C11.242 (5)C16—C171.363 (8)
O3—C31.411 (6)C16—H160.9300
O3—H30.8200C17—C181.398 (8)
O4—C61.300 (5)C17—H170.9300
C1—C21.527 (6)C18—C191.408 (6)
C2—C31.528 (6)C18—C251.441 (8)
C2—H20.9800C19—C201.434 (6)
C3—H3A0.9700C20—C211.415 (6)
C3—H3B0.9700C21—C221.403 (8)
C4—C51.438 (6)C21—C261.433 (8)
C4—H40.9300C22—C231.356 (8)
C5—C61.404 (6)C22—H220.9300
C5—C101.445 (6)C23—C241.391 (7)
C6—C71.447 (6)C23—H230.9300
C7—C81.353 (7)C24—H240.9300
C7—H70.9300C25—C261.323 (9)
C8—C91.424 (7)C25—H250.9300
C8—H80.9300C26—H260.9300
N1—Cu1—O493.23 (13)C14—C9—C8122.4 (5)
N1—Cu1—O184.06 (14)C10—C9—C8117.9 (4)
O4—Cu1—O1158.33 (14)C11—C10—C9116.8 (4)
N1—Cu1—N2172.54 (16)C11—C10—C5123.2 (4)
O4—Cu1—N293.43 (14)C9—C10—C5120.0 (4)
O1—Cu1—N288.51 (14)C12—C11—C10122.0 (4)
N1—Cu1—N3103.78 (14)C12—C11—H11119.0
O4—Cu1—N3103.66 (14)C10—C11—H11119.0
O1—Cu1—N397.86 (13)C11—C12—C13120.3 (5)
N2—Cu1—N377.87 (14)C11—C12—H12119.8
C4—N1—C2120.0 (3)C13—C12—H12119.8
C4—N1—Cu1126.2 (3)C14—C13—C12119.2 (5)
C2—N1—Cu1113.5 (3)C14—C13—H13120.4
C15—N2—C19118.8 (4)C12—C13—H13120.4
C15—N2—Cu1123.7 (3)C13—C14—C9122.0 (5)
C19—N2—Cu1117.0 (3)C13—C14—H14119.0
C24—N3—C20118.2 (4)C9—C14—H14119.0
C24—N3—Cu1133.4 (3)N2—C15—C16122.7 (5)
C20—N3—Cu1108.2 (3)N2—C15—H15118.7
C1—O1—Cu1115.0 (3)C16—C15—H15118.7
C3—O3—H3109.5C17—C16—C15119.7 (6)
C6—O4—Cu1125.0 (3)C17—C16—H16120.2
O2—C1—O1125.3 (4)C15—C16—H16120.2
O2—C1—C2117.5 (4)C16—C17—C18119.7 (5)
O1—C1—C2117.1 (4)C16—C17—H17120.2
N1—C2—C1109.3 (3)C18—C17—H17120.2
N1—C2—C3111.4 (4)C17—C18—C19117.3 (5)
C1—C2—C3110.3 (3)C17—C18—C25124.6 (5)
N1—C2—H2108.6C19—C18—C25118.1 (5)
C1—C2—H2108.6N2—C19—C18121.8 (5)
C3—C2—H2108.6N2—C19—C20118.2 (4)
O3—C3—C2110.4 (4)C18—C19—C20120.0 (4)
O3—C3—H3A109.6N3—C20—C21122.5 (4)
C2—C3—H3A109.6N3—C20—C19118.0 (4)
O3—C3—H3B109.6C21—C20—C19119.5 (4)
C2—C3—H3B109.6C22—C21—C20116.6 (5)
H3A—C3—H3B108.1C22—C21—C26124.5 (5)
N1—C4—C5125.7 (4)C20—C21—C26118.9 (5)
N1—C4—H4117.2C23—C22—C21120.3 (5)
C5—C4—H4117.2C23—C22—H22119.8
C6—C5—C4120.6 (4)C21—C22—H22119.8
C6—C5—C10120.6 (4)C22—C23—C24119.3 (5)
C4—C5—C10118.6 (4)C22—C23—H23120.3
O4—C6—C5126.5 (4)C24—C23—H23120.3
O4—C6—C7116.4 (4)N3—C24—C23122.9 (5)
C5—C6—C7117.1 (4)N3—C24—H24118.5
C8—C7—C6122.1 (5)C23—C24—H24118.5
C8—C7—H7118.9C26—C25—C18122.3 (5)
C6—C7—H7118.9C26—C25—H25118.9
C7—C8—C9121.8 (4)C18—C25—H25118.9
C7—C8—H8119.1C25—C26—C21121.2 (5)
C9—C8—H8119.1C25—C26—H26119.4
C14—C9—C10119.6 (5)C21—C26—H26119.4
O4—Cu1—N1—C49.5 (4)C7—C8—C9—C102.6 (7)
O1—Cu1—N1—C4168.0 (4)C14—C9—C10—C111.2 (6)
N3—Cu1—N1—C495.4 (4)C8—C9—C10—C11179.5 (4)
O4—Cu1—N1—C2164.0 (3)C14—C9—C10—C5177.9 (4)
O1—Cu1—N1—C25.6 (3)C8—C9—C10—C50.4 (6)
N3—Cu1—N1—C291.1 (3)C6—C5—C10—C11174.5 (4)
O4—Cu1—N2—C1577.5 (4)C4—C5—C10—C1110.0 (6)
O1—Cu1—N2—C1580.9 (4)C6—C5—C10—C94.5 (6)
N3—Cu1—N2—C15179.3 (4)C4—C5—C10—C9170.9 (4)
O4—Cu1—N2—C19111.2 (3)C9—C10—C11—C120.2 (6)
O1—Cu1—N2—C1990.4 (3)C5—C10—C11—C12178.9 (4)
N3—Cu1—N2—C197.9 (3)C10—C11—C12—C130.9 (7)
N1—Cu1—N3—C2410.5 (4)C11—C12—C13—C141.0 (7)
O4—Cu1—N3—C2486.3 (4)C12—C13—C14—C90.0 (7)
O1—Cu1—N3—C2496.3 (4)C10—C9—C14—C131.2 (7)
N2—Cu1—N3—C24176.9 (4)C8—C9—C14—C13179.4 (5)
N1—Cu1—N3—C20165.7 (3)C19—N2—C15—C161.2 (7)
O4—Cu1—N3—C2097.4 (3)Cu1—N2—C15—C16170.0 (4)
O1—Cu1—N3—C2080.0 (3)N2—C15—C16—C171.2 (8)
N2—Cu1—N3—C206.8 (3)C15—C16—C17—C180.6 (8)
N1—Cu1—O1—C10.8 (3)C16—C17—C18—C190.1 (8)
O4—Cu1—O1—C183.0 (5)C16—C17—C18—C25179.4 (5)
N2—Cu1—O1—C1178.6 (3)C15—N2—C19—C180.6 (7)
N3—Cu1—O1—C1103.9 (3)Cu1—N2—C19—C18171.2 (3)
N1—Cu1—O4—C613.8 (4)C15—N2—C19—C20179.9 (4)
O1—Cu1—O4—C695.8 (5)Cu1—N2—C19—C208.1 (5)
N2—Cu1—O4—C6169.6 (3)C17—C18—C19—N20.0 (7)
N3—Cu1—O4—C691.3 (3)C25—C18—C19—N2179.4 (4)
Cu1—O1—C1—O2176.0 (4)C17—C18—C19—C20179.3 (4)
Cu1—O1—C1—C26.9 (5)C25—C18—C19—C200.1 (6)
C4—N1—C2—C1164.0 (4)C24—N3—C20—C213.1 (6)
Cu1—N1—C2—C110.0 (4)Cu1—N3—C20—C21173.8 (4)
C4—N1—C2—C373.8 (5)C24—N3—C20—C19178.2 (4)
Cu1—N1—C2—C3112.2 (3)Cu1—N3—C20—C194.9 (4)
O2—C1—C2—N1171.6 (4)N2—C19—C20—N31.4 (6)
O1—C1—C2—N111.1 (5)C18—C19—C20—N3177.9 (4)
O2—C1—C2—C365.5 (5)N2—C19—C20—C21179.9 (4)
O1—C1—C2—C3111.8 (4)C18—C19—C20—C210.8 (6)
N1—C2—C3—O373.8 (4)N3—C20—C21—C223.2 (7)
C1—C2—C3—O3164.6 (4)C19—C20—C21—C22178.1 (4)
C2—N1—C4—C5176.3 (4)N3—C20—C21—C26177.3 (4)
Cu1—N1—C4—C53.1 (6)C19—C20—C21—C261.4 (7)
N1—C4—C5—C616.1 (7)C20—C21—C22—C231.4 (8)
N1—C4—C5—C10168.5 (4)C26—C21—C22—C23179.1 (5)
Cu1—O4—C6—C55.7 (6)C21—C22—C23—C240.4 (8)
Cu1—O4—C6—C7174.7 (3)C20—N3—C24—C231.1 (7)
C4—C5—C6—O411.2 (7)Cu1—N3—C24—C23174.8 (3)
C10—C5—C6—O4173.4 (4)C22—C23—C24—N30.6 (8)
C4—C5—C6—C7168.4 (4)C17—C18—C25—C26179.3 (5)
C10—C5—C6—C77.0 (6)C19—C18—C25—C260.1 (8)
O4—C6—C7—C8175.5 (4)C18—C25—C26—C210.7 (9)
C5—C6—C7—C84.8 (7)C22—C21—C26—C25178.1 (5)
C6—C7—C8—C90.0 (7)C20—C21—C26—C251.4 (8)
C7—C8—C9—C14175.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.842.659 (5)172
C25—H25···O2ii0.932.633.454 (6)148
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C14H11NO4)(C12H8N2)]
Mr500.98
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)10.7302 (12), 6.4687 (6), 15.7930 (17)
β (°) 91.924 (1)
V3)1095.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.43 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.664, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
5555, 3633, 3022
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.094, 0.97
No. of reflections3633
No. of parameters307
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.25
Absolute structureFlack (1983), with 1529 Friedel pairs
Absolute structure parameter0.023 (17)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N11.914 (3)Cu1—O11.994 (3)
Cu1—N22.012 (4)Cu1—O41.920 (3)
Cu1—N32.297 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.842.659 (5)172
C25—H25···O2ii0.932.633.454 (6)148
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province for a research grant (grant No. Y2004B02).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarnovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef Web of Science Google Scholar
First citationKalagouda, B. G., Manjula, S. P., Ramesh, S. V., Rashmi, V. S. & Siddappa, A. P. (2006). Transition Met. Chem. 31, 580–585.  Google Scholar
First citationQiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745–m746.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Dong, J.-F., Li, L.-Z., Li, L.-W. & Wang, D.-Q. (2007). Acta Cryst. E63, m1059–m1060.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, R.-M., Hao, C.-J., Wang, Y.-P. & Li, S.-B. (1999). J. Mol. Catal. A Chem. 147, 173–178.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds