metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[diquinolinium [[di­aqua­cobaltate(II)]-μ-cyclo­tetra­phosphato] hexa­hydrate]

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bChemistry Departement, Faculty of Sciences, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: Hanene.Hemissi@fsb.rnu.tn

(Received 9 January 2010; accepted 17 January 2010; online 23 January 2010)

The cyclo­tetra­phosphate anion, [P4O12]4−, forms the title complex with cobalt(II) and quinolinium, {(C9H8N)2[Co(P4O12)(H2O)2]·6H2O}n. In the complex anion, the CoII ion, lying on an inversion center, is surrounded by four phosphate O atoms and two water mol­ecules in a slightly distorted octa­hedral geometry. The crystal structure consists of anionic ribbons of formula {[Co(P4O12)(H2O)2]2−}n extending along [100]. A network of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds consolidates the crystal packing.

Related literature

For the crystal chemistry of condensed phosphates, see: Durif (1995[Durif, A. (1995). In Crystal Chemistry of Condensed Phosphates. New York: Plenum Press.]). For general background to transition metal–organic derivatives of polyoxoanions, see: Feher & Budzichowski (1995[Feher, F. J. & Budzichowski, T. A. (1995). Polyhedron, 14, 3239-3253.]); Guerrero et al. (1999[Guerrero, G., Mehring, M., Mutin, P. H., Dahan, F. & Vioux, A. (1999). J. Chem. Soc. Dalton Trans. pp. 1537-1538.]); Ikotun et al. (2008[Ikotun, O. F., Ouellette, W., Lloret, F., Kruger, P. E., Julve, M. & Doyle, R. P. (2008). Eur. J. Inorg. Chem. pp. 2691-2697.]); Lugmair & Tilley (1998[Lugmair, C. G. & Tilley, T. D. (1998). Inorg. Chem. 37, 1821-1826.]). For general background to hydrogen bonds, see: Blessing (1986[Blessing, R. H. (1986). Acta Cryst. B42, 613-621.]); Brown (1976[Brown, I. D. (1976). Acta Cryst. A32, 24-31.]); Steiner & Saenger (1993[Steiner, T. & Saenger, W. (1993). J. Am. Chem. Soc. 115, 4540-4547.]). For the synthesis, see: Ondik (1964[Ondik, H. M. (1964). Acta Cryst. 17, 1139-1145.]).

[Scheme 1]

Experimental

Crystal data
  • (C9H8N)2[Co(P4O12)(H2O)2]·6H2O

  • Mr = 779.27

  • Triclinic, [P \overline 1]

  • a = 7.443 (3) Å

  • b = 10.037 (4) Å

  • c = 10.682 (7) Å

  • α = 83.74 (4)°

  • β = 70.98 (4)°

  • γ = 85.71 (3)°

  • V = 749.4 (6) Å3

  • Z = 1

  • Ag Kα radiation

  • λ = 0.56083 Å

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • 12878 measured reflections

  • 7242 independent reflections

  • 4531 reflections with I > 2σ(I)

  • Rint = 0.039

  • 2 standard reflections every 120 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.164

  • S = 0.98

  • 7242 reflections

  • 237 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.11 e Å−3

  • Δρmin = −1.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.88 2.728 (3) 171
O1—H11⋯O4 0.83 (3) 1.98 (3) 2.747 (3) 154 (3)
O1—H21⋯O2i 0.84 (3) 2.00 (3) 2.841 (3) 179 (4)
O2—H12⋯O3ii 0.83 (3) 1.85 (3) 2.666 (3) 168 (3)
O2—H22⋯O6 0.83 (3) 1.95 (3) 2.771 (3) 172 (4)
O3—H13⋯O6 0.86 (2) 1.95 (2) 2.743 (3) 152 (3)
O3—H23⋯O5iii 0.87 (3) 2.02 (2) 2.833 (3) 154 (3)
O4—H14⋯O9iv 0.86 (2) 2.01 (2) 2.824 (3) 157 (4)
O4—H24⋯O9i 0.86 (3) 2.06 (3) 2.890 (3) 163 (3)
C7—H7⋯O9v 0.93 2.59 3.459 (4) 156
C9—H9⋯O3 0.93 2.54 3.080 (4) 118
C9—H9⋯O10vi 0.93 2.59 3.381 (3) 143
Symmetry codes: (i) x-1, y, z; (ii) -x+3, -y+1, -z; (iii) -x+2, -y+1, -z; (iv) -x+1, -y+2, -z+1; (v) -x+2, -y+2, -z; (vi) x+1, y, z-1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Transition metal–organic derivatives of polyoxoanions have recently been attracting considerable attention, because they serve as molecular models of metal species bound on oxo surfaces of heterogeneous catalysts (Feher & Budzichowski, 1995). In this context, several frameworks of this kind of materials with one-, two- or three-dimensional networks have been successfully constructed by using monophosphates, monophosphonates and monophosphinates (Guerrero et al., 1999; Lugmair & Tilley, 1998). In contrast, structural diversity of transition metal–organic derivatives of condensed phosphates has been much less explored. In order to enrich the varieties in such kinds of hybrid materials, we report the synthesis and crystal structure of (C9H8N)2[Co(P4O12)(H2O)2].6H2O.

The title compound contains protonated quinolinium cations, diaquacyclotetraphosphatocobaltate(II) dianions and water molecules (Fig. 1). The cyclic phosphate anion, [P4O12]4-, is located around an inversion center and so is built up by only two independent PO4 tetrahedra. Its main geometrical features [the bond lengths P—O = 1.473 (2)–1.603 (2) Å, and the bond angles O—P—O = 100.24 (9)–121.11 (1)°, P—O—P = 134.40 (1)–137.25 (1)°] are not significantly different from what is commonly observed in other cyclotetraphosphate anions with the same internal symmetry (Durif, 1995). The coordination polyhedron of the CoII atom, which lies on an inversion center, is octahedral with four external O atoms O(E) from two adjacent bidentate cyclotetraphosphates and two water O atoms O(w), providing a Co atom with six O donor set [four O(E) equatorial arrangement with two axial O(w)]. The Co—O bond lengths fall within the range of 2.106 (2)–2.116 (2) Å. The shortest distance between two neighboring Co atoms is 7.443 (3) Å. This distance could explain the cobalt magnetic properties in several materials (Ikotun et al., 2008). The [CoO4(H2O)2] octahedra alternate with the P4O12 rings as to form infinite ribbons, fused through Co—O—P linkage, propagating along the a axis (Fig. 2). The protonated quinolinim is located in the inter-ribbons spacing, and it neutralizes the negative charge of the anionic part. These organic entities are planar as evidenced by the mean deviation (±0.005 Å) from least square plane defined by the nine constituent atoms. As well as electrostatic and van der Waals interactions, the component species of the title compound establish a three-dimensional network through N—H···O and O—H···O hydrogen bonds. The structure is further stabilized with non-classical hydrogen bonds of the C—H···O type (Steiner & Saenger, 1993). The examination of the hydrogen-bond scheme shows that hydrogen bond connecting C9 to the phosphate group and water molecule is bifurcated. In the structure, there are two strong hydrogen bonds, with O···O distances of 2.666 (3) and 2.728 (3) Å. The others are weaker, with O(N, C)···O ranging from 2.743 (3) to 3.459 (4) Å (Blessing, 1986; Brown, 1976).

Related literature top

For the crystal chemistry of condensed phosphates, see: Durif (1995). For general background to transition metal–organic derivatives of polyoxoanions, see: Feher & Budzichowski (1995); Guerrero et al. (1999); Ikotun et al. (2008); Lugmair & Tilley (1998). For general background to hydrogen bonds, see: Blessing (1986); Brown (1976); Steiner & Saenger (1993). For the synthesis, see: Ondik (1964).

Experimental top

The title compound was prepared by adding ethanolic solution (5 ml) of quinoline (8.34 mmol) dropwise to a mixture of H4P4O12 (4.15 mmol) and CoCl2 (4.15 mmol) in water (20 ml). Pink prism crystals of good quality were obtained after a slow evaporation during few days at ambient temperature. The cyclotetraphosphoric acid, H4P4O12, was produced from Na4P4O12.4H2O, prepared according to the Ondik process (Ondik, 1964) through an ion-exchange resin in H-state (Amberlite IR 120).

Refinement top

H atoms on C and N atoms were positioned geometrically and treated as riding on their parent atoms, with N—H = 0.86, C—H =0.93 Å and with Uiso(H) = 1.2Ueq(C,N). H atoms of water molecules were located from difference Fourier maps and refined isotropically. The highest residual electron density was found 0.73 Å from Co1 and the deepest hole 0.76 Å from Co1.

Structure description top

Transition metal–organic derivatives of polyoxoanions have recently been attracting considerable attention, because they serve as molecular models of metal species bound on oxo surfaces of heterogeneous catalysts (Feher & Budzichowski, 1995). In this context, several frameworks of this kind of materials with one-, two- or three-dimensional networks have been successfully constructed by using monophosphates, monophosphonates and monophosphinates (Guerrero et al., 1999; Lugmair & Tilley, 1998). In contrast, structural diversity of transition metal–organic derivatives of condensed phosphates has been much less explored. In order to enrich the varieties in such kinds of hybrid materials, we report the synthesis and crystal structure of (C9H8N)2[Co(P4O12)(H2O)2].6H2O.

The title compound contains protonated quinolinium cations, diaquacyclotetraphosphatocobaltate(II) dianions and water molecules (Fig. 1). The cyclic phosphate anion, [P4O12]4-, is located around an inversion center and so is built up by only two independent PO4 tetrahedra. Its main geometrical features [the bond lengths P—O = 1.473 (2)–1.603 (2) Å, and the bond angles O—P—O = 100.24 (9)–121.11 (1)°, P—O—P = 134.40 (1)–137.25 (1)°] are not significantly different from what is commonly observed in other cyclotetraphosphate anions with the same internal symmetry (Durif, 1995). The coordination polyhedron of the CoII atom, which lies on an inversion center, is octahedral with four external O atoms O(E) from two adjacent bidentate cyclotetraphosphates and two water O atoms O(w), providing a Co atom with six O donor set [four O(E) equatorial arrangement with two axial O(w)]. The Co—O bond lengths fall within the range of 2.106 (2)–2.116 (2) Å. The shortest distance between two neighboring Co atoms is 7.443 (3) Å. This distance could explain the cobalt magnetic properties in several materials (Ikotun et al., 2008). The [CoO4(H2O)2] octahedra alternate with the P4O12 rings as to form infinite ribbons, fused through Co—O—P linkage, propagating along the a axis (Fig. 2). The protonated quinolinim is located in the inter-ribbons spacing, and it neutralizes the negative charge of the anionic part. These organic entities are planar as evidenced by the mean deviation (±0.005 Å) from least square plane defined by the nine constituent atoms. As well as electrostatic and van der Waals interactions, the component species of the title compound establish a three-dimensional network through N—H···O and O—H···O hydrogen bonds. The structure is further stabilized with non-classical hydrogen bonds of the C—H···O type (Steiner & Saenger, 1993). The examination of the hydrogen-bond scheme shows that hydrogen bond connecting C9 to the phosphate group and water molecule is bifurcated. In the structure, there are two strong hydrogen bonds, with O···O distances of 2.666 (3) and 2.728 (3) Å. The others are weaker, with O(N, C)···O ranging from 2.743 (3) to 3.459 (4) Å (Blessing, 1986; Brown, 1976).

For the crystal chemistry of condensed phosphates, see: Durif (1995). For general background to transition metal–organic derivatives of polyoxoanions, see: Feher & Budzichowski (1995); Guerrero et al. (1999); Ikotun et al. (2008); Lugmair & Tilley (1998). For general background to hydrogen bonds, see: Blessing (1986); Brown (1976); Steiner & Saenger (1993). For the synthesis, see: Ondik (1964).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) 2-x, 1-y, 1-z.]
[Figure 2] Fig. 2. Projection of the title compound along the b axis.
catena-Poly[diquinolinium [[diaquacobaltate(II)]-µ- cyclotetraphosphato] hexahydrate] top
Crystal data top
(C9H8N)2[Co(P4O12)(H2O)2]·6H2OZ = 1
Mr = 779.27F(000) = 401
Triclinic, P1Dx = 1.727 Mg m3
Hall symbol: -P 1Ag Kα radiation, λ = 0.56083 Å
a = 7.443 (3) ÅCell parameters from 25 reflections
b = 10.037 (4) Åθ = 9.0–11.0°
c = 10.682 (7) ŵ = 0.46 mm1
α = 83.74 (4)°T = 293 K
β = 70.98 (4)°Prism, pink
γ = 85.71 (3)°0.20 × 0.18 × 0.16 mm
V = 749.4 (6) Å3
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.039
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.2°
Graphite monochromatorh = 1212
non–profiled ω/2θ scansk = 1616
12878 measured reflectionsl = 1710
7242 independent reflections2 standard reflections every 120 min
4531 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.097P)2]
where P = (Fo2 + 2Fc2)/3
7242 reflections(Δ/σ)max = 0.022
237 parametersΔρmax = 1.11 e Å3
13 restraintsΔρmin = 1.46 e Å3
Crystal data top
(C9H8N)2[Co(P4O12)(H2O)2]·6H2Oγ = 85.71 (3)°
Mr = 779.27V = 749.4 (6) Å3
Triclinic, P1Z = 1
a = 7.443 (3) ÅAg Kα radiation, λ = 0.56083 Å
b = 10.037 (4) ŵ = 0.46 mm1
c = 10.682 (7) ÅT = 293 K
α = 83.74 (4)°0.20 × 0.18 × 0.16 mm
β = 70.98 (4)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.039
12878 measured reflections2 standard reflections every 120 min
7242 independent reflections intensity decay: 2%
4531 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.05713 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 1.11 e Å3
7242 reflectionsΔρmin = 1.46 e Å3
237 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.02117 (10)
P20.84035 (7)0.67186 (5)0.52866 (5)0.02037 (11)
P10.94639 (7)0.49127 (5)0.31420 (5)0.02082 (11)
O50.7442 (2)0.47075 (18)0.33361 (17)0.0290 (3)
O90.8351 (3)0.81917 (16)0.5033 (2)0.0353 (4)
O80.9759 (3)0.63833 (17)0.6180 (2)0.0329 (4)
O70.9688 (2)0.61035 (16)0.39418 (17)0.0284 (3)
O10.4503 (3)0.68127 (18)0.39353 (19)0.0348 (4)
O61.0732 (3)0.5182 (2)0.17668 (18)0.0410 (4)
C11.2832 (4)0.9562 (2)0.0159 (3)0.0314 (4)
N11.3663 (3)0.8353 (2)0.0577 (2)0.0350 (4)
H11.38360.77360.00020.042*
C21.2288 (5)0.9765 (3)0.1194 (3)0.0432 (6)
H21.24880.90920.18110.052*
C61.2539 (4)1.0555 (3)0.1110 (3)0.0370 (5)
C71.3093 (5)1.0269 (3)0.2441 (3)0.0447 (6)
H71.28791.09080.30820.054*
C31.1460 (6)1.0973 (4)0.1583 (4)0.0549 (8)
H31.10941.11280.24760.066*
C81.3942 (5)0.9057 (4)0.2799 (3)0.0495 (7)
H81.43400.88760.36860.059*
C91.4211 (4)0.8100 (3)0.1843 (3)0.0437 (6)
H91.47800.72690.20860.052*
C51.1660 (5)1.1797 (3)0.0655 (4)0.0512 (8)
H51.14331.24780.12550.061*
C41.1153 (6)1.1986 (3)0.0652 (4)0.0607 (10)
H41.05901.28050.09400.073*
O100.6636 (2)0.59823 (17)0.58700 (16)0.0282 (3)
O21.3962 (3)0.65569 (19)0.14615 (19)0.0358 (4)
O31.3081 (3)0.5195 (2)0.0816 (2)0.0412 (4)
O40.2153 (3)0.9054 (2)0.4559 (3)0.0549 (6)
H110.369 (4)0.735 (3)0.436 (3)0.044 (10)*
H210.436 (5)0.674 (4)0.320 (2)0.052 (11)*
H121.496 (3)0.610 (3)0.118 (4)0.052 (11)*
H221.299 (3)0.613 (3)0.163 (4)0.046 (10)*
H131.208 (4)0.513 (4)0.013 (2)0.052 (11)*
H231.264 (5)0.505 (4)0.145 (2)0.056 (11)*
H140.231 (5)0.990 (2)0.451 (4)0.056 (11)*
H240.098 (3)0.897 (3)0.465 (4)0.056 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01923 (17)0.02359 (18)0.02047 (18)0.00158 (13)0.00587 (13)0.00424 (13)
P20.0235 (2)0.0164 (2)0.0224 (2)0.00486 (16)0.00927 (18)0.00462 (16)
P10.0217 (2)0.0241 (2)0.0155 (2)0.00357 (17)0.00460 (16)0.00431 (17)
O50.0228 (7)0.0389 (9)0.0272 (8)0.0059 (6)0.0095 (6)0.0111 (6)
O90.0451 (10)0.0176 (7)0.0457 (11)0.0086 (6)0.0190 (8)0.0054 (7)
O80.0385 (9)0.0262 (7)0.0439 (10)0.0039 (6)0.0270 (8)0.0061 (7)
O70.0277 (7)0.0257 (7)0.0277 (8)0.0016 (6)0.0009 (6)0.0091 (6)
O10.0473 (10)0.0289 (8)0.0294 (9)0.0092 (7)0.0153 (8)0.0057 (7)
O60.0442 (10)0.0516 (11)0.0189 (7)0.0067 (9)0.0032 (7)0.0060 (7)
C10.0319 (10)0.0283 (10)0.0328 (12)0.0007 (8)0.0094 (9)0.0019 (8)
N10.0377 (11)0.0283 (9)0.0329 (11)0.0020 (8)0.0050 (8)0.0013 (8)
C20.0487 (15)0.0478 (15)0.0337 (13)0.0005 (12)0.0135 (11)0.0072 (11)
C60.0421 (13)0.0286 (11)0.0394 (13)0.0012 (9)0.0137 (11)0.0025 (9)
C70.0512 (16)0.0462 (15)0.0356 (14)0.0076 (12)0.0154 (12)0.0092 (12)
C30.064 (2)0.0542 (19)0.0495 (18)0.0019 (16)0.0158 (16)0.0233 (15)
C80.0562 (18)0.0559 (18)0.0300 (13)0.0067 (14)0.0044 (12)0.0033 (12)
C90.0460 (15)0.0368 (13)0.0383 (14)0.0024 (11)0.0004 (11)0.0071 (11)
C50.0574 (19)0.0280 (12)0.069 (2)0.0018 (12)0.0237 (16)0.0006 (13)
C40.062 (2)0.0364 (15)0.082 (3)0.0054 (14)0.0164 (19)0.0267 (17)
O100.0251 (7)0.0347 (8)0.0249 (7)0.0022 (6)0.0056 (6)0.0095 (6)
O20.0398 (10)0.0339 (9)0.0312 (9)0.0008 (7)0.0094 (8)0.0001 (7)
O30.0451 (11)0.0543 (12)0.0253 (9)0.0030 (9)0.0129 (8)0.0072 (8)
O40.0449 (12)0.0263 (9)0.091 (2)0.0085 (8)0.0178 (12)0.0164 (11)
Geometric parameters (Å, º) top
Co1—O10i2.1064 (16)N1—H10.8600
Co1—O102.1064 (16)C2—C31.361 (5)
Co1—O1i2.1127 (18)C2—H20.9300
Co1—O12.1127 (18)C6—C71.402 (4)
Co1—O5i2.1159 (16)C6—C51.421 (4)
Co1—O52.1159 (16)C7—C81.362 (5)
P2—O91.4737 (17)C7—H70.9300
P2—O101.4748 (17)C3—C41.403 (6)
P2—O81.5963 (17)C3—H30.9300
P2—O71.6029 (16)C8—C91.377 (5)
P1—O61.4730 (18)C8—H80.9300
P1—O51.4779 (17)C9—H90.9300
P1—O8ii1.5833 (18)C5—C41.354 (6)
P1—O71.5913 (17)C5—H50.9300
O8—P1ii1.5833 (18)C4—H40.9300
O1—H110.830 (17)O2—H120.827 (17)
O1—H210.831 (17)O2—H220.825 (17)
C1—N11.372 (3)O3—H130.863 (17)
C1—C61.401 (4)O3—H230.875 (17)
C1—C21.402 (4)O4—H140.855 (18)
N1—C91.326 (4)O4—H240.855 (17)
O10i—Co1—O10180.00 (8)N1—C1—C2119.6 (2)
O10i—Co1—O1i90.99 (7)C6—C1—C2122.1 (3)
O10—Co1—O1i89.01 (7)C9—N1—C1122.4 (2)
O10i—Co1—O189.01 (7)C9—N1—H1118.8
O10—Co1—O190.99 (7)C1—N1—H1118.8
O1i—Co1—O1180.0C3—C2—C1118.3 (3)
O10i—Co1—O5i89.95 (6)C3—C2—H2120.8
O10—Co1—O5i90.05 (6)C1—C2—H2120.8
O1i—Co1—O5i86.22 (7)C1—C6—C7118.8 (3)
O1—Co1—O5i93.78 (7)C1—C6—C5117.5 (3)
O10i—Co1—O590.05 (6)C7—C6—C5123.7 (3)
O10—Co1—O589.95 (6)C8—C7—C6120.1 (3)
O1i—Co1—O593.78 (7)C8—C7—H7119.9
O1—Co1—O586.22 (7)C6—C7—H7119.9
O5i—Co1—O5180.0C2—C3—C4120.8 (3)
O9—P2—O10121.11 (11)C2—C3—H3119.6
O9—P2—O8105.29 (10)C4—C3—H3119.6
O10—P2—O8110.13 (10)C7—C8—C9119.8 (3)
O9—P2—O7108.09 (10)C7—C8—H8120.1
O10—P2—O7109.91 (9)C9—C8—H8120.1
O8—P2—O7100.23 (10)N1—C9—C8120.5 (3)
O6—P1—O5117.41 (11)N1—C9—H9119.7
O6—P1—O8ii109.43 (12)C8—C9—H9119.7
O5—P1—O8ii106.81 (10)C4—C5—C6119.9 (3)
O6—P1—O7106.60 (11)C4—C5—H5120.0
O5—P1—O7111.38 (9)C6—C5—H5120.0
O8ii—P1—O7104.47 (10)C5—C4—C3121.3 (3)
P1—O5—Co1130.02 (10)C5—C4—H4119.3
P1ii—O8—P2137.26 (12)C3—C4—H4119.3
P1—O7—P2134.40 (11)P2—O10—Co1131.90 (10)
Co1—O1—H11117 (2)H12—O2—H22113 (3)
Co1—O1—H21116 (3)H13—O3—H23102 (2)
H11—O1—H21110 (2)H14—O4—H24107 (3)
N1—C1—C6118.3 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.882.728 (3)171
O1—H11···O40.83 (3)1.98 (3)2.747 (3)154 (3)
O1—H21···O2iii0.84 (3)2.00 (3)2.841 (3)179 (4)
O2—H12···O3iv0.83 (3)1.85 (3)2.666 (3)168 (3)
O2—H22···O60.83 (3)1.95 (3)2.771 (3)172 (4)
O3—H13···O60.86 (2)1.95 (2)2.743 (3)152 (3)
O3—H23···O5v0.87 (3)2.02 (2)2.833 (3)154 (3)
O4—H14···O9vi0.86 (2)2.01 (2)2.824 (3)157 (4)
O4—H24···O9iii0.86 (3)2.06 (3)2.890 (3)163 (3)
C7—H7···O9vii0.932.593.459 (4)156
C9—H9···O30.932.543.080 (4)118
C9—H9···O10viii0.932.593.381 (3)143
Symmetry codes: (iii) x1, y, z; (iv) x+3, y+1, z; (v) x+2, y+1, z; (vi) x+1, y+2, z+1; (vii) x+2, y+2, z; (viii) x+1, y, z1.

Experimental details

Crystal data
Chemical formula(C9H8N)2[Co(P4O12)(H2O)2]·6H2O
Mr779.27
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.443 (3), 10.037 (4), 10.682 (7)
α, β, γ (°)83.74 (4), 70.98 (4), 85.71 (3)
V3)749.4 (6)
Z1
Radiation typeAg Kα, λ = 0.56083 Å
µ (mm1)0.46
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12878, 7242, 4531
Rint0.039
(sin θ/λ)max1)0.836
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.164, 0.98
No. of reflections7242
No. of parameters237
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.11, 1.46

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.86001.88002.728 (3)171.00
O1—H11···O40.83 (3)1.98 (3)2.747 (3)154 (3)
O1—H21···O2i0.84 (3)2.00 (3)2.841 (3)179 (4)
O2—H12···O3ii0.83 (3)1.85 (3)2.666 (3)168 (3)
O2—H22···O60.83 (3)1.95 (3)2.771 (3)172 (4)
O3—H13···O60.86 (2)1.95 (2)2.743 (3)152 (3)
O3—H23···O5iii0.87 (3)2.02 (2)2.833 (3)154 (3)
O4—H14···O9iv0.86 (2)2.01 (2)2.824 (3)157 (4)
O4—H24···O9i0.86 (3)2.06 (3)2.890 (3)163 (3)
C7—H7···O9v0.932.593.459 (4)156
C9—H9···O30.932.543.080 (4)118
C9—H9···O10vi0.932.593.381 (3)143
Symmetry codes: (i) x1, y, z; (ii) x+3, y+1, z; (iii) x+2, y+1, z; (iv) x+1, y+2, z+1; (v) x+2, y+2, z; (vi) x+1, y, z1.
 

References

First citationBlessing, R. H. (1986). Acta Cryst. B42, 613–621.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (1976). Acta Cryst. A32, 24–31.  CrossRef IUCr Journals Web of Science Google Scholar
First citationDurif, A. (1995). In Crystal Chemistry of Condensed Phosphates. New York: Plenum Press.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFeher, F. J. & Budzichowski, T. A. (1995). Polyhedron, 14, 3239–3253.  CrossRef CAS Web of Science Google Scholar
First citationGuerrero, G., Mehring, M., Mutin, P. H., Dahan, F. & Vioux, A. (1999). J. Chem. Soc. Dalton Trans. pp. 1537–1538.  Web of Science CSD CrossRef Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationIkotun, O. F., Ouellette, W., Lloret, F., Kruger, P. E., Julve, M. & Doyle, R. P. (2008). Eur. J. Inorg. Chem. pp. 2691–2697.  Web of Science CSD CrossRef Google Scholar
First citationLugmair, C. G. & Tilley, T. D. (1998). Inorg. Chem. 37, 1821–1826.  Web of Science CSD CrossRef CAS Google Scholar
First citationOndik, H. M. (1964). Acta Cryst. 17, 1139–1145.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. & Saenger, W. (1993). J. Am. Chem. Soc. 115, 4540–4547.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds