metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(8-quinolylimino­meth­yl)phenolato-κ3N,N′,O]iron(III) azide

aDepartment of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan, bDepartment of Chemistry, Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan, cDepartment of Chemistry and Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan, and dDepartment of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
*Correspondence e-mail: hayami@sci.kumamoto-u.ac.jp

(Received 9 January 2010; accepted 22 January 2010; online 27 January 2010)

The title compound, [Fe(C16H11N2O)2]N3, consists of a [Fe(qsal)2]+ cation [Hqsal = N-(8-quinol­yl)salicylaldimine] and an azide anion. The FeIII ion, lying on a twofold rotation axis, is coordinated by four N atoms and two O atoms from two tridentate qsal ligands in an octa­hedral geometry. The mol­ecules are connected into a three-dimensional network by inter­molecular C—H⋯N and C—H⋯O inter­actions. ππ inter­actions [inter­planar distance = 3.58 (1) Å] between the quinoline rings of adjacent mol­ecules further stabilize the crystal structure.

Related literature

For Fe(III) complexes with qsal ligands, see: Hayami et al. (2001[Hayami, S., Gu, Z.-Z., Yoshiki, H., Fujishima, A. & Sato, O. (2001). J. Am. Chem. Soc. 123, 11644-11650.]); Takahashi et al. (2006[Takahashi, K., Cui, H.-B., Okano, Y., Kobayashi, H., Einaga, Y. & Sato, O. (2006). Inorg. Chem. 45, 5739-5741.]). For bond lengths in Fe(III) complexes, see: Nihei et al. (2007[Nihei, M., Shiga, T., Maeda, Y. & Oshio, H. (2007). Coord. Chem. Rev. 251, 2606-2621.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C16H11N2O)2]N3

  • Mr = 592.42

  • Monoclinic, P 2/n

  • a = 11.3717 (8) Å

  • b = 10.1190 (8) Å

  • c = 11.7734 (6) Å

  • β = 109.3542 (15)°

  • V = 1278.21 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 200 K

  • 0.50 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.741, Tmax = 0.883

  • 11530 measured reflections

  • 2929 independent reflections

  • 2556 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.104

  • S = 0.86

  • 2929 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—O1 1.8648 (11)
Fe1—N1 1.9347 (13)
Fe1—N2 1.9680 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.95 2.70 3.565 (2) 151
C15—H15⋯N4ii 0.95 2.45 3.299 (2) 149
Symmetry codes: (i) [x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Yadokari-XG (Wakita, 2000[Wakita, K. (2000). Yadokari-XG. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Fe(III) complexes with the qsal ligands [Hqsal = N-(8-quinolyl)salicylaldimine] were reported previously (Hayami et al., 2001; Takahashi et al., 2006). It was showed that the spin states of the complexes can be tuned by the different counter anions. Some of the complexes were observed spin crossover or spin transition. The title compound (Fig. 1) does not show both spin-crossover behaviors but is in the low-spin state at room temperature. In the complex, Fe1—O1, Fe1—N1 and Fe1—N2 bond lengths (Table 1) are close to those for other low-spin Fe(III) complexes (Nihei et al., 2007).

In addition, many intermolecular interactions are observed in the crystal structure. The intermolecular C—H···N hydrogen bond (involving quinoline ring H15 and the azide N4), C—H···O hydrogen bond (involving quinoline ring H9 and phenolate O1) (Table 2), and ππ interaction [interplanar distance = 3.58 (1) Å] between the quinoline rings of adjacent molecules link the molecules and provide stability into the crystal structure.

Related literature top

For Fe(III) complexes with qsal ligands, see: Hayami et al. (2001); Takahashi et al. (2006). For bond lengths in Fe(III) complexes, see: Nihei et al. (2007).

Experimental top

Hqsal and [Fe(qsal)2]Cl were prepared from 8-aminoquinoline and salicylaldehyde according to the method described previously (Hayami et al., 2001). The title compound was prepared by slow addition of a MeOH solution (30 ml) containing [Fe(qsal)2]Cl (0.5 mmol) to a MeOH solution (30 ml) containing an excess of NaN3 (2 mmol).

Refinement top

All H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Fe(III) complexes with the qsal ligands [Hqsal = N-(8-quinolyl)salicylaldimine] were reported previously (Hayami et al., 2001; Takahashi et al., 2006). It was showed that the spin states of the complexes can be tuned by the different counter anions. Some of the complexes were observed spin crossover or spin transition. The title compound (Fig. 1) does not show both spin-crossover behaviors but is in the low-spin state at room temperature. In the complex, Fe1—O1, Fe1—N1 and Fe1—N2 bond lengths (Table 1) are close to those for other low-spin Fe(III) complexes (Nihei et al., 2007).

In addition, many intermolecular interactions are observed in the crystal structure. The intermolecular C—H···N hydrogen bond (involving quinoline ring H15 and the azide N4), C—H···O hydrogen bond (involving quinoline ring H9 and phenolate O1) (Table 2), and ππ interaction [interplanar distance = 3.58 (1) Å] between the quinoline rings of adjacent molecules link the molecules and provide stability into the crystal structure.

For Fe(III) complexes with qsal ligands, see: Hayami et al. (2001); Takahashi et al. (2006). For bond lengths in Fe(III) complexes, see: Nihei et al. (2007).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Yadokari-XG (Wakita, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound drawn with the 50% probability displacement ellipsoids. [Symmetry codes: (i) 1/2-x, y, 3/2-z; (ii) 1/2-x, y, 5/2-z.]
Bis[2-(8-quinolyliminomethyl)phenolato- κ3N,N',O]iron(III) azide top
Crystal data top
[Fe(C16H11N2O)2]N3F(000) = 610
Mr = 592.42Dx = 1.539 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2yacCell parameters from 11530 reflections
a = 11.3717 (8) Åθ = 1.8–27.5°
b = 10.1190 (8) ŵ = 0.64 mm1
c = 11.7734 (6) ÅT = 200 K
β = 109.3542 (15)°Block, black
V = 1278.21 (15) Å30.50 × 0.20 × 0.20 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2929 independent reflections
Radiation source: rotation anode2556 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 014
Tmin = 0.741, Tmax = 0.883k = 013
11530 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2929 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Fe(C16H11N2O)2]N3V = 1278.21 (15) Å3
Mr = 592.42Z = 2
Monoclinic, P2/nMo Kα radiation
a = 11.3717 (8) ŵ = 0.64 mm1
b = 10.1190 (8) ÅT = 200 K
c = 11.7734 (6) Å0.50 × 0.20 × 0.20 mm
β = 109.3542 (15)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2929 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2556 reflections with I > 2σ(I)
Tmin = 0.741, Tmax = 0.883Rint = 0.026
11530 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 0.86Δρmax = 0.34 e Å3
2929 reflectionsΔρmin = 0.39 e Å3
191 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.25000.12760 (3)0.75000.01593 (12)
O10.13778 (10)0.00441 (11)0.77255 (10)0.0230 (2)
N10.35553 (12)0.13158 (12)0.91699 (11)0.0181 (3)
N20.36114 (11)0.27008 (12)0.73375 (11)0.0184 (3)
N30.25000.28128 (19)1.25000.0279 (4)
N40.26580 (17)0.28132 (18)1.15630 (15)0.0433 (4)
C10.14342 (14)0.05156 (14)0.87550 (13)0.0211 (3)
C20.04475 (17)0.13609 (16)0.87415 (16)0.0286 (4)
H20.02240.14910.80120.034*
C30.04411 (18)0.20050 (19)0.97754 (16)0.0352 (4)
H30.02360.25690.97450.042*
C40.1411 (2)0.1841 (2)1.08613 (16)0.0395 (5)
H40.14090.23071.15610.047*
C50.23689 (18)0.09964 (19)1.09040 (15)0.0321 (4)
H50.30220.08651.16460.038*
C60.24043 (15)0.03176 (15)0.98671 (14)0.0230 (3)
C70.34174 (14)0.05762 (15)1.00231 (13)0.0218 (3)
H70.40310.06361.07990.026*
C80.45447 (14)0.22483 (14)0.94235 (13)0.0207 (3)
C90.54613 (16)0.24933 (17)1.05052 (15)0.0293 (4)
H90.54930.19921.11970.035*
C100.63516 (17)0.3487 (2)1.05877 (17)0.0355 (4)
H100.69880.36391.13370.043*
C110.63210 (16)0.42458 (18)0.96008 (16)0.0323 (4)
H110.69240.49200.96790.039*
C120.53937 (15)0.40166 (16)0.84810 (15)0.0252 (3)
C130.52736 (15)0.47520 (17)0.74226 (16)0.0291 (4)
H130.58290.54600.74430.035*
C140.43587 (15)0.44350 (16)0.63807 (15)0.0272 (3)
H140.42700.49250.56690.033*
C150.35431 (14)0.33827 (16)0.63543 (14)0.0221 (3)
H150.29260.31530.56130.027*
C160.45197 (13)0.30040 (15)0.83972 (13)0.0194 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01757 (17)0.01657 (17)0.01266 (17)0.0000.00365 (11)0.000
O10.0252 (5)0.0240 (5)0.0169 (5)0.0063 (4)0.0032 (4)0.0021 (4)
N10.0187 (6)0.0199 (6)0.0149 (6)0.0007 (4)0.0045 (5)0.0004 (4)
N20.0174 (5)0.0205 (6)0.0174 (6)0.0000 (5)0.0059 (5)0.0001 (4)
N30.0242 (9)0.0256 (10)0.0281 (10)0.0000.0009 (8)0.000
N40.0472 (10)0.0516 (10)0.0297 (9)0.0174 (8)0.0110 (7)0.0039 (7)
C10.0265 (7)0.0198 (7)0.0175 (7)0.0006 (6)0.0079 (6)0.0011 (5)
C20.0292 (8)0.0309 (9)0.0244 (8)0.0087 (7)0.0071 (7)0.0009 (6)
C30.0408 (10)0.0377 (9)0.0293 (9)0.0159 (8)0.0147 (8)0.0011 (7)
C40.0536 (11)0.0434 (11)0.0224 (8)0.0161 (9)0.0138 (8)0.0049 (7)
C50.0408 (10)0.0356 (9)0.0166 (8)0.0079 (8)0.0052 (7)0.0038 (6)
C60.0286 (8)0.0216 (7)0.0188 (7)0.0012 (6)0.0080 (6)0.0010 (6)
C70.0247 (7)0.0223 (7)0.0155 (7)0.0008 (6)0.0027 (6)0.0006 (5)
C80.0195 (6)0.0215 (7)0.0199 (7)0.0003 (5)0.0049 (5)0.0024 (5)
C90.0290 (8)0.0341 (9)0.0215 (8)0.0055 (7)0.0039 (6)0.0012 (6)
C100.0284 (9)0.0451 (10)0.0254 (9)0.0118 (8)0.0012 (7)0.0045 (7)
C110.0282 (8)0.0346 (9)0.0315 (9)0.0123 (7)0.0064 (7)0.0049 (7)
C120.0217 (7)0.0249 (8)0.0288 (9)0.0027 (6)0.0080 (6)0.0026 (6)
C130.0280 (8)0.0266 (8)0.0346 (9)0.0066 (7)0.0129 (7)0.0012 (7)
C140.0283 (8)0.0263 (8)0.0295 (8)0.0013 (6)0.0128 (7)0.0066 (6)
C150.0204 (7)0.0248 (7)0.0213 (7)0.0005 (6)0.0071 (6)0.0035 (6)
C160.0172 (6)0.0203 (7)0.0202 (7)0.0001 (5)0.0054 (5)0.0020 (5)
Geometric parameters (Å, º) top
Fe1—O11.8648 (11)C5—H50.9500
Fe1—N11.9347 (13)C6—C71.428 (2)
Fe1—N21.9680 (12)C7—H70.9500
O1—C11.3201 (17)C8—C91.375 (2)
N1—C71.3031 (19)C8—C161.422 (2)
N1—C81.4222 (19)C9—C101.407 (2)
N2—C151.3276 (19)C9—H90.9500
N2—C161.3650 (18)C10—C111.384 (3)
N3—N41.1750 (17)C10—H100.9500
N3—N4i1.1750 (17)C11—C121.408 (2)
C1—C21.407 (2)C11—H110.9500
C1—C61.419 (2)C12—C131.418 (2)
C2—C31.383 (2)C12—C161.408 (2)
C2—H20.9500C13—H130.9500
C3—H30.9500C14—C131.358 (2)
C4—C31.394 (3)C15—C141.406 (2)
C4—C51.372 (3)C14—H140.9500
C4—H40.9500C15—H150.9500
C5—C61.413 (2)
O1—Fe1—O1ii96.10 (7)C4—C5—H5119.3
O1—Fe1—N195.31 (5)C6—C5—H5119.3
O1—Fe1—N1ii86.29 (5)C1—C6—C5119.50 (14)
O1ii—Fe1—N186.29 (5)C1—C6—C7123.74 (14)
O1ii—Fe1—N1ii95.31 (5)C5—C6—C7116.72 (14)
O1—Fe1—N2174.51 (5)N1—C7—C6124.24 (14)
O1—Fe1—N2ii89.09 (5)N1—C7—H7117.9
O1ii—Fe1—N289.09 (5)C6—C7—H7117.9
O1ii—Fe1—N2ii174.51 (5)N1—C8—C9128.20 (14)
N1ii—Fe1—N1177.62 (7)N1—C8—C16112.74 (13)
N1—Fe1—N283.19 (5)C9—C8—C16119.05 (14)
N1—Fe1—N2ii95.05 (5)C8—C9—C10120.01 (16)
N1ii—Fe1—N295.05 (5)C8—C9—H9120.0
N1ii—Fe1—N2ii83.19 (5)C10—C9—H9120.0
N2ii—Fe1—N285.79 (7)C9—C10—C11121.43 (16)
Fe1—O1—C1126.18 (10)C9—C10—H10119.3
Fe1—N1—C7125.36 (11)C11—C10—H10119.3
Fe1—N1—C8114.10 (10)C10—C11—C12119.83 (16)
C7—N1—C8120.54 (13)C10—C11—H11120.1
Fe1—N2—C15127.71 (10)C12—C11—H11120.1
Fe1—N2—C16113.05 (9)C11—C12—C13124.08 (16)
C15—N2—C16119.21 (13)C11—C12—C16118.54 (15)
N4—N3—N4i180.0 (3)C13—C12—C16117.39 (15)
O1—C1—C2117.04 (14)C12—C13—C14119.44 (15)
O1—C1—C6124.95 (14)C14—C13—H13120.3
C2—C1—C6118.00 (14)C12—C13—H13120.3
C1—C2—C3120.89 (16)C13—C14—C15120.09 (15)
C1—C2—H2119.6C13—C14—H14120.0
C3—C2—H2119.6C15—C14—H14120.0
C2—C3—C4121.17 (16)N2—C15—C14121.80 (14)
C2—C3—H3119.4N2—C15—H15119.1
C4—C3—H3119.4C14—C15—H15119.1
C3—C4—C5119.02 (16)N2—C16—C12122.03 (14)
C5—C4—H4120.5N2—C16—C8116.85 (13)
C3—C4—H4120.5C8—C16—C12121.12 (14)
C4—C5—C6121.37 (16)
O1ii—Fe1—O1—C186.71 (12)C15—N2—C16—C120.3 (2)
N1—Fe1—O1—C10.11 (13)O1—C1—C2—C3178.95 (16)
N1ii—Fe1—O1—C1178.34 (13)C6—C1—C2—C31.6 (3)
O1—Fe1—N1—C73.95 (13)O1—C1—C6—C5178.78 (16)
O1ii—Fe1—N1—C791.84 (13)O1—C1—C6—C73.5 (2)
O1—Fe1—N1—C8176.17 (10)C2—C1—C6—C51.9 (2)
O1ii—Fe1—N1—C888.04 (10)C2—C1—C6—C7175.91 (15)
N2—Fe1—N1—C7178.64 (13)C1—C2—C3—C40.2 (3)
N2ii—Fe1—N1—C793.51 (13)C2—C3—C4—C51.7 (3)
N2—Fe1—N1—C81.49 (10)C3—C4—C5—C61.5 (3)
N2ii—Fe1—N1—C886.62 (10)C4—C5—C6—C10.3 (3)
O1ii—Fe1—N2—C1595.66 (13)C4—C5—C6—C7177.60 (17)
N1—Fe1—N2—C15177.97 (13)C1—C6—C7—N10.8 (2)
N1ii—Fe1—N2—C150.41 (13)C5—C6—C7—N1177.02 (15)
N2ii—Fe1—N2—C1582.36 (13)N1—C8—C9—C10178.44 (16)
O1ii—Fe1—N2—C1686.28 (10)C16—C8—C9—C100.5 (2)
N1—Fe1—N2—C160.09 (10)N1—C8—C16—N22.56 (19)
N1ii—Fe1—N2—C16178.47 (10)N1—C8—C16—C12177.32 (13)
N2ii—Fe1—N2—C1695.70 (11)C9—C8—C16—N2178.36 (14)
Fe1—O1—C1—C2176.17 (11)C9—C8—C16—C121.8 (2)
Fe1—O1—C1—C63.2 (2)C8—C9—C10—C110.8 (3)
Fe1—N1—C7—C64.7 (2)C9—C10—C11—C120.9 (3)
C8—N1—C7—C6175.48 (14)C10—C11—C12—C13179.10 (17)
Fe1—N1—C8—C9178.46 (14)C10—C11—C12—C160.4 (3)
Fe1—N1—C8—C162.56 (16)C11—C12—C13—C14178.80 (17)
C7—N1—C8—C91.4 (2)C16—C12—C13—C141.7 (2)
C7—N1—C8—C16177.56 (13)C11—C12—C16—N2178.43 (15)
Fe1—N2—C15—C14176.08 (11)C11—C12—C16—C81.7 (2)
C16—N2—C15—C141.9 (2)C13—C12—C16—N22.1 (2)
Fe1—N2—C16—C81.35 (16)C13—C12—C16—C8177.80 (14)
Fe1—N2—C16—C12178.52 (11)C12—C13—C14—C150.3 (3)
C15—N2—C16—C8179.59 (13)C13—C14—C15—N22.2 (2)
Symmetry codes: (i) x+1/2, y, z+5/2; (ii) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1iii0.952.703.565 (2)151
C15—H15···N4ii0.952.453.299 (2)149
Symmetry codes: (ii) x+1/2, y, z+3/2; (iii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C16H11N2O)2]N3
Mr592.42
Crystal system, space groupMonoclinic, P2/n
Temperature (K)200
a, b, c (Å)11.3717 (8), 10.1190 (8), 11.7734 (6)
β (°) 109.3542 (15)
V3)1278.21 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.50 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.741, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
11530, 2929, 2556
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.104, 0.86
No. of reflections2929
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.39

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalClear (Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Yadokari-XG (Wakita, 2000).

Selected bond lengths (Å) top
Fe1—O11.8648 (11)Fe1—N21.9680 (12)
Fe1—N11.9347 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.952.703.565 (2)151
C15—H15···N4ii0.952.453.299 (2)149
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y, z+3/2.
 

Acknowledgements

This work was supported by `Development of Mol­ecular Devices in Ferroelectric Metallomesogens' in 2006 of the New Energy and Industrial Technology Development Organization (NEDO) of Japan and Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Governement (No. 20350028).

References

First citationHayami, S., Gu, Z.-Z., Yoshiki, H., Fujishima, A. & Sato, O. (2001). J. Am. Chem. Soc. 123, 11644–11650.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNihei, M., Shiga, T., Maeda, Y. & Oshio, H. (2007). Coord. Chem. Rev. 251, 2606–2621.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, K., Cui, H.-B., Okano, Y., Kobayashi, H., Einaga, Y. & Sato, O. (2006). Inorg. Chem. 45, 5739–5741.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWakita, K. (2000). Yadokari-XG. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds