metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,10-phenanthrolin-1-ium) hexa­bromidoplatinate(IV) dihydrate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 17 December 2009; accepted 23 December 2009; online 9 January 2010)

The asymmetric unit of the title compound, (C12H9N2)2[PtBr6]·2H2O, contains a protonated 1,10-phenanthroline cation (H-phen), one half of a [PtBr6]2− anionic complex and a solvent water mol­ecule. The PtIV ion is located on an inversion centre and is coordinated in an octa­hedral environment by six Br atoms. The crystal structure displays numerous inter­molecular ππ inter­actions between six-membered rings of H-phen, with a shortest centroid–centroid distance of 3.670 (5) Å, and inter­molecular N—H⋯O, O—H⋯Br and O—H⋯N hydrogen bonds.

Related literature

For the thermal decomposition of (H-phen)2[PtBr6]·H2O, see: Liptay et al. (1992[Liptay, G., Zsakó, J., Várhelyi, Cs. & Novák, Cs. (1992). J. Therm. Anal. 38, 2301-2310.]). For other [PtBr6]2− complexes, see: Grundy & Brown (1970[Grundy, H. D. & Brown, I. D. (1970). Can. J. Chem. 48, 1151-1154.]); Hu et al. (2009[Hu, J. J., Li, F. & Andy Hor, T. S. (2009). Organometallics, 28, 1212-1220.]); Yusenko et al. (2002[Yusenko, K. V., Gromilov, S. A., Baidina, I. A., Shubin, Yu. V., Korol'kov, I. V., Drebushchak, T. N., Basova, T. V. & Korenev, S. V. (2002). J. Struct. Chem. 43, 649-655.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H9N2)2[PtBr6]·2H2O

  • Mr = 1073.01

  • Triclinic, [P \overline 1]

  • a = 8.1999 (6) Å

  • b = 9.5808 (7) Å

  • c = 9.6342 (7) Å

  • α = 83.811 (1)°

  • β = 73.300 (1)°

  • γ = 74.961 (2)°

  • V = 699.67 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 13.61 mm−1

  • T = 200 K

  • 0.21 × 0.19 × 0.11 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.577, Tmax = 1.000

  • 4327 measured reflections

  • 2684 independent reflections

  • 2236 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.095

  • S = 1.13

  • 2684 reflections

  • 169 parameters

  • H-atom parameters constrained

  • Δρmax = 1.77 e Å−3

  • Δρmin = −1.37 e Å−3

Table 1
Selected bond lengths (Å)

Pt1—Br1 2.4755 (9)
Pt1—Br2 2.4743 (9)
Pt1—Br3 2.4725 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O1i 0.88 2.00 2.741 (12) 142
O1—H21⋯Br1ii 1.01 2.63 3.463 (9) 139
O1—H22⋯N2iii 1.04 2.28 2.890 (12) 116
Symmetry codes: (i) x+1, y-1, z; (ii) x, y+1, z-1; (iii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The compound, (H-phen)2(PtBr6).H2O (H-phen is monoprotonated 1,10-phenanthroline cation), was previously prepared by the reaction of H2PtBr6.6H2O with 1,10-phenanthroline and HBr, and its thermal decomposition was studied by means of derivatography and differential scanning calorimetry (Liptay et al., 1992).

The asymmetric unit of the title compound, (H-phen)2(PtBr6).2H2O, contains a protonated 1,10-phenanthroline cation, one half of a PtBr6 anionic complex and a solvent water molecule (Fig. 1). In the complex, the PtIV ion is coordinated in an almost perfect octahedral environment by six Br atoms and a centre of inversion is located at the Pt atom with the special position (1/2, 0, 1/2). The Pt—Br bond lengths are nearly equivalent with the range of 2.4725 (9)–2.4755 (9) Å (Table 1) and the cis Br—Pt—Br bond angles lie in the range of 89.41 (3)–90.59 (3)°. These values are similar to those found in the complexes K2PtBr6 (Grundy & Brown, 1970), [Rh(NH3)5Cl][PtBr6] (Yusenko et al., 2002) and (C21H19N2)2(PtBr6) (Hu et al., 2009). The crystal structure displays numerous intermolecular ππ interactions between six-membered rings of H-phen, with a shortest centroid–centroid distance of 3.670 (5) Å. There are also intermolecular N—H···O, O—H···Br and O—H···N hydrogen bonds (Fig. 2 and Table 2).

Related literature top

For the thermal decomposition of (H-phen)2(PtBr6).H2O, see: Liptay et al. (1992). For other (PtBr6)2- complexes, see: Grundy & Brown (1970); Hu et al. (2009); Yusenko et al. (2002).

Experimental top

To a solution of K2PtBr6 (0.101 g, 0.134 mmol) in H2O (10 ml) was added 1,10-phenanthroline (0.027 g, 0.147 mmol). The mixture was stirred for 8 h at room temperature. The precipitate obtained was separated by filtration, washed with acetone and dried at 50 °C, to give a dark orange powder (0.051 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95, N—H = 0.88 Å and Uiso(H) = 1.2Ueq(C, N)]. The H atoms of the water molecule were located from difference Fourier maps, but not refined [Uiso(H) = 1.5Ueq(O)]. The highest peak (1.77 e Å-3) and the deepest hole (-1.37 e Å-3) in the difference Fourier map are located 1.11 and 1.27 Å, respectively, from the atoms Pt1 and Br1.

Structure description top

The compound, (H-phen)2(PtBr6).H2O (H-phen is monoprotonated 1,10-phenanthroline cation), was previously prepared by the reaction of H2PtBr6.6H2O with 1,10-phenanthroline and HBr, and its thermal decomposition was studied by means of derivatography and differential scanning calorimetry (Liptay et al., 1992).

The asymmetric unit of the title compound, (H-phen)2(PtBr6).2H2O, contains a protonated 1,10-phenanthroline cation, one half of a PtBr6 anionic complex and a solvent water molecule (Fig. 1). In the complex, the PtIV ion is coordinated in an almost perfect octahedral environment by six Br atoms and a centre of inversion is located at the Pt atom with the special position (1/2, 0, 1/2). The Pt—Br bond lengths are nearly equivalent with the range of 2.4725 (9)–2.4755 (9) Å (Table 1) and the cis Br—Pt—Br bond angles lie in the range of 89.41 (3)–90.59 (3)°. These values are similar to those found in the complexes K2PtBr6 (Grundy & Brown, 1970), [Rh(NH3)5Cl][PtBr6] (Yusenko et al., 2002) and (C21H19N2)2(PtBr6) (Hu et al., 2009). The crystal structure displays numerous intermolecular ππ interactions between six-membered rings of H-phen, with a shortest centroid–centroid distance of 3.670 (5) Å. There are also intermolecular N—H···O, O—H···Br and O—H···N hydrogen bonds (Fig. 2 and Table 2).

For the thermal decomposition of (H-phen)2(PtBr6).H2O, see: Liptay et al. (1992). For other (PtBr6)2- complexes, see: Grundy & Brown (1970); Hu et al. (2009); Yusenko et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) 1-x, -y, 1-z.]
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen bonds are drawn with dashed lines.
Bis(1,10-phenanthrolin-1-ium) hexabromidoplatinate(IV) dihydrate top
Crystal data top
(C12H9N2)2[PtBr6]·2H2OZ = 1
Mr = 1073.01F(000) = 498
Triclinic, P1Dx = 2.547 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1999 (6) ÅCell parameters from 2462 reflections
b = 9.5808 (7) Åθ = 2.2–26.0°
c = 9.6342 (7) ŵ = 13.61 mm1
α = 83.811 (1)°T = 200 K
β = 73.300 (1)°Block, red
γ = 74.961 (2)°0.21 × 0.19 × 0.11 mm
V = 699.67 (9) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
2684 independent reflections
Radiation source: fine-focus sealed tube2236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 105
Tmin = 0.577, Tmax = 1.000k = 1111
4327 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0229P)2 + 6.779P]
where P = (Fo2 + 2Fc2)/3
2684 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 1.77 e Å3
0 restraintsΔρmin = 1.37 e Å3
Crystal data top
(C12H9N2)2[PtBr6]·2H2Oγ = 74.961 (2)°
Mr = 1073.01V = 699.67 (9) Å3
Triclinic, P1Z = 1
a = 8.1999 (6) ÅMo Kα radiation
b = 9.5808 (7) ŵ = 13.61 mm1
c = 9.6342 (7) ÅT = 200 K
α = 83.811 (1)°0.21 × 0.19 × 0.11 mm
β = 73.300 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2684 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2236 reflections with I > 2σ(I)
Tmin = 0.577, Tmax = 1.000Rint = 0.026
4327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.13Δρmax = 1.77 e Å3
2684 reflectionsΔρmin = 1.37 e Å3
169 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.50000.00000.50000.02001 (15)
Br10.55354 (13)0.02152 (11)0.74241 (10)0.0305 (2)
Br20.81815 (12)0.08964 (11)0.38859 (10)0.0314 (2)
Br30.53880 (12)0.24992 (10)0.47143 (10)0.0285 (2)
N10.9383 (10)0.2591 (8)0.1579 (8)0.0297 (18)
H110.96420.18480.10250.036*
N20.8156 (10)0.2812 (9)0.0880 (8)0.0299 (18)
C10.9906 (13)0.2386 (12)0.2773 (10)0.036 (2)
H11.04930.14450.30330.043*
C20.9605 (13)0.3535 (12)0.3656 (11)0.036 (2)
H21.00020.33950.45070.044*
C30.8717 (12)0.4879 (11)0.3265 (10)0.032 (2)
H30.84860.56760.38600.038*
C40.8147 (12)0.5086 (10)0.1992 (9)0.0236 (19)
C50.7304 (12)0.6471 (10)0.1520 (10)0.026 (2)
H50.70920.72870.20830.032*
C60.6798 (12)0.6644 (10)0.0280 (10)0.029 (2)
H60.62500.75820.00210.035*
C70.7080 (11)0.5430 (11)0.0586 (9)0.024 (2)
C80.6533 (12)0.5559 (11)0.1871 (9)0.027 (2)
H80.59880.64800.22120.033*
C90.6794 (12)0.4360 (11)0.2609 (10)0.028 (2)
H90.64410.44250.34760.034*
C100.7605 (13)0.3001 (11)0.2063 (10)0.032 (2)
H100.77610.21690.25860.039*
C110.7892 (11)0.4034 (11)0.0142 (9)0.025 (2)
C120.8468 (11)0.3880 (9)0.1150 (9)0.0203 (18)
O10.1634 (13)1.0222 (10)0.0141 (10)0.072 (3)
H210.23260.99990.08910.109*
H220.19430.95250.09840.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0223 (3)0.0181 (3)0.0209 (3)0.00115 (19)0.01071 (19)0.00139 (18)
Br10.0391 (6)0.0287 (5)0.0263 (5)0.0014 (4)0.0189 (4)0.0018 (4)
Br20.0222 (5)0.0312 (6)0.0382 (5)0.0001 (4)0.0090 (4)0.0045 (4)
Br30.0360 (5)0.0207 (5)0.0313 (5)0.0061 (4)0.0134 (4)0.0008 (4)
N10.034 (5)0.016 (4)0.031 (4)0.004 (3)0.007 (4)0.002 (3)
N20.034 (5)0.031 (5)0.021 (4)0.007 (4)0.001 (3)0.011 (3)
C10.032 (5)0.040 (6)0.034 (5)0.010 (5)0.014 (4)0.023 (5)
C20.032 (6)0.052 (7)0.035 (6)0.019 (5)0.018 (4)0.002 (5)
C30.030 (5)0.034 (6)0.029 (5)0.006 (4)0.004 (4)0.003 (4)
C40.031 (5)0.020 (5)0.028 (5)0.012 (4)0.019 (4)0.010 (4)
C50.033 (5)0.018 (5)0.032 (5)0.000 (4)0.017 (4)0.006 (4)
C60.024 (5)0.020 (5)0.047 (6)0.000 (4)0.019 (4)0.004 (4)
C70.016 (4)0.037 (6)0.020 (4)0.007 (4)0.004 (3)0.004 (4)
C80.023 (5)0.031 (6)0.028 (5)0.008 (4)0.009 (4)0.007 (4)
C90.027 (5)0.034 (6)0.025 (5)0.006 (4)0.008 (4)0.003 (4)
C100.042 (6)0.024 (5)0.028 (5)0.010 (5)0.000 (4)0.006 (4)
C110.014 (4)0.035 (6)0.024 (5)0.005 (4)0.004 (4)0.000 (4)
C120.018 (4)0.018 (5)0.023 (4)0.005 (4)0.004 (3)0.002 (3)
O10.085 (7)0.052 (6)0.058 (6)0.005 (5)0.005 (5)0.003 (5)
Geometric parameters (Å, º) top
Pt1—Br12.4755 (9)C4—C51.421 (12)
Pt1—Br22.4743 (9)C5—C61.353 (13)
Pt1—Br32.4725 (9)C5—H50.9500
N1—C11.319 (12)C6—C71.436 (12)
N1—C121.358 (11)C6—H60.9500
N1—H110.8800C7—C111.411 (13)
N2—C101.321 (12)C7—C81.417 (12)
N2—C111.371 (12)C8—C91.354 (13)
C1—C21.391 (15)C8—H80.9500
C1—H10.9500C9—C101.420 (14)
C2—C31.377 (15)C9—H90.9500
C2—H20.9500C10—H100.9500
C3—C41.411 (12)C11—C121.434 (12)
C3—H30.9500O1—H211.01
C4—C121.409 (12)O1—H221.04
Br3i—Pt1—Br3180.0C12—C4—C3118.5 (8)
Br3i—Pt1—Br290.59 (3)C12—C4—C5119.3 (8)
Br3—Pt1—Br289.41 (3)C3—C4—C5122.2 (8)
Br3i—Pt1—Br2i89.41 (3)C6—C5—C4121.0 (8)
Br3—Pt1—Br2i90.59 (3)C6—C5—H5119.5
Br2—Pt1—Br2i180.00 (2)C4—C5—H5119.5
Br3i—Pt1—Br190.44 (3)C5—C6—C7120.9 (9)
Br3—Pt1—Br189.56 (3)C5—C6—H6119.6
Br2—Pt1—Br189.99 (3)C7—C6—H6119.6
Br2i—Pt1—Br190.01 (3)C11—C7—C8117.5 (8)
Br3i—Pt1—Br1i89.56 (3)C11—C7—C6119.8 (8)
Br3—Pt1—Br1i90.44 (3)C8—C7—C6122.6 (9)
Br2—Pt1—Br1i90.01 (3)C9—C8—C7119.4 (9)
Br2i—Pt1—Br1i89.99 (3)C9—C8—H8120.3
Br1—Pt1—Br1i180.000 (1)C7—C8—H8120.3
C1—N1—C12124.0 (9)C8—C9—C10118.7 (9)
C1—N1—H11118.0C8—C9—H9120.6
C12—N1—H11118.0C10—C9—H9120.6
C10—N2—C11116.2 (8)N2—C10—C9124.7 (9)
N1—C1—C2120.6 (10)N2—C10—H10117.7
N1—C1—H1119.7C9—C10—H10117.7
C2—C1—H1119.7N2—C11—C7123.5 (8)
C3—C2—C1118.3 (9)N2—C11—C12118.1 (8)
C3—C2—H2120.8C7—C11—C12118.4 (8)
C1—C2—H2120.8N1—C12—C4117.8 (8)
C2—C3—C4120.7 (9)N1—C12—C11121.7 (8)
C2—C3—H3119.6C4—C12—C11120.5 (8)
C4—C3—H3119.6H21—O1—H22119.7
C12—N1—C1—C22.9 (14)C10—N2—C11—C12179.9 (8)
N1—C1—C2—C31.3 (14)C8—C7—C11—N20.7 (12)
C1—C2—C3—C40.7 (14)C6—C7—C11—N2177.7 (8)
C2—C3—C4—C121.6 (13)C8—C7—C11—C12179.5 (7)
C2—C3—C4—C5176.9 (9)C6—C7—C11—C122.0 (12)
C12—C4—C5—C60.3 (13)C1—N1—C12—C43.7 (13)
C3—C4—C5—C6178.8 (9)C1—N1—C12—C11178.4 (8)
C4—C5—C6—C70.8 (14)C3—C4—C12—N12.9 (12)
C5—C6—C7—C110.1 (13)C5—C4—C12—N1175.6 (8)
C5—C6—C7—C8178.4 (9)C3—C4—C12—C11179.1 (8)
C11—C7—C8—C90.4 (12)C5—C4—C12—C112.4 (12)
C6—C7—C8—C9177.9 (8)N2—C11—C12—N15.5 (12)
C7—C8—C9—C100.3 (13)C7—C11—C12—N1174.7 (8)
C11—N2—C10—C90.7 (13)N2—C11—C12—C4176.6 (8)
C8—C9—C10—N20.9 (14)C7—C11—C12—C43.2 (12)
C10—N2—C11—C70.1 (12)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O1ii0.882.002.741 (12)142
O1—H21···Br1iii1.012.633.463 (9)139
O1—H22···N2iv1.042.282.890 (12)116
Symmetry codes: (ii) x+1, y1, z; (iii) x, y+1, z1; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula(C12H9N2)2[PtBr6]·2H2O
Mr1073.01
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.1999 (6), 9.5808 (7), 9.6342 (7)
α, β, γ (°)83.811 (1), 73.300 (1), 74.961 (2)
V3)699.67 (9)
Z1
Radiation typeMo Kα
µ (mm1)13.61
Crystal size (mm)0.21 × 0.19 × 0.11
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.577, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4327, 2684, 2236
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.13
No. of reflections2684
No. of parameters169
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.77, 1.37

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pt1—Br12.4755 (9)Pt1—Br32.4725 (9)
Pt1—Br22.4743 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O1i0.882.002.741 (12)142
O1—H21···Br1ii1.012.633.463 (9)139
O1—H22···N2iii1.042.282.890 (12)116
Symmetry codes: (i) x+1, y1, z; (ii) x, y+1, z1; (iii) x+1, y+1, z.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0094056).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGrundy, H. D. & Brown, I. D. (1970). Can. J. Chem. 48, 1151–1154.  CrossRef CAS Web of Science Google Scholar
First citationHu, J. J., Li, F. & Andy Hor, T. S. (2009). Organometallics, 28, 1212–1220.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiptay, G., Zsakó, J., Várhelyi, Cs. & Novák, Cs. (1992). J. Therm. Anal. 38, 2301–2310.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusenko, K. V., Gromilov, S. A., Baidina, I. A., Shubin, Yu. V., Korol'kov, I. V., Drebushchak, T. N., Basova, T. V. & Korenev, S. V. (2002). J. Struct. Chem. 43, 649–655.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds