metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-oxido-bis­­[(4-formyl-2-meth­oxy­phenolato-κO1)oxido(1,10-phenan­throline-κ2N,N′)vanadium(V)]

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lilianzhi1963@yahoo.com.cn

(Received 11 August 2009; accepted 16 August 2009; online 22 August 2009)

The title complex, [V2(C8H7O3)2O4(C12H8N2)2], is a centrosymmetric dimer formed by two VV complex units bridged by two μ2-oxido groups. The VV atom is six-coordinated by three oxide O atoms, one O atom from a vanillinate ligand and two N atoms from a 1,10-phenanthroline ligand in a significantly distorted octa­hedral geometry. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds connect the mol­ecules into a three-dimensional network.

Related literature

For general background to vanadium complexes, see: Dong et al. (2000[Dong, Y. H., Narla, R. K., Sudbeck, E. & Uckun, F. M. (2000). J. Inorg. Biochem. 78, 321-330.]); Thompson et al. (1999[Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561-2571.]); Yuan et al. (2003[Yuan, M., Wang, E., Lu, Y., Wang, S., Li, Y., Wang, L. & Hu, C. (2003). Inorg. Chim. Acta, 344, 257-261.]). For related structures, see: Li et al. (2004[Li, L. Z., Xu, T., Wang, D. Q. & Ji, H. W. (2004). Chin. J. Inorg. Chem. 20, 236-240.]); Mokry & Carrano (1993[Mokry, L. M. & Carrano, C. J. (1993). Inorg. Chem. 32, 6119-6121.]).

[Scheme 1]

Experimental

Crystal data
  • [V2(C8H7O3)2O4(C12H8N2)2]

  • Mr = 828.56

  • Triclinic, [P \overline 1]

  • a = 9.3453 (18) Å

  • b = 9.786 (2) Å

  • c = 11.090 (3) Å

  • α = 80.097 (2)°

  • β = 65.672 (1)°

  • γ = 71.535 (1)°

  • V = 875.6 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 298 K

  • 0.21 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.884, Tmax = 0.904

  • 4641 measured reflections

  • 3038 independent reflections

  • 2372 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.177

  • S = 1.07

  • 3038 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Selected bond lengths (Å)

V1—O3 1.898 (3)
V1—O4 1.657 (3)
V1—O5 1.610 (3)
V1—O4i 2.346 (3)
V1—N1 2.148 (3)
V1—N2 2.245 (3)
Symmetry code: (i) -x+2, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1ii 0.93 2.48 3.393 (6) 168
C16—H16⋯O4iii 0.93 2.44 3.192 (5) 138
C8—H8A⋯O5iv 0.96 2.68 3.280 (6) 121
C11—H11⋯O5v 0.93 2.67 3.312 (5) 127
C1—H1⋯O5vi 0.93 2.62 3.441 (6) 148
Symmetry codes: (ii) x+1, y-1, z-1; (iii) x-1, y, z; (iv) -x+1, -y+2, -z+2; (v) -x+2, -y+1, -z+1; (vi) -x+2, -y+2, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There is an increased interest in vanadium complexes due to their possible uses in pharmaceuticals for the treatment of diabetes (Thompson et al., 1999) and their practical applications in catalysis and material science (Yuan et al., 2003). The vanadium complexes with 1,10-phenanthroline ligand have been reported to exhibit potent antitumor activity (Dong et al., 2000). Vanillin is an useful organic compound with multifunctional groups including aldehyde, ether and phenol. In an effort to uncover the chemistry and biochemistry of vanadium with nitrogen- and oxygen-containing ligands, we report herein the synthesis and crystal structure of a new binuclear vanadium(V) complexes with mixed ligands of vanillin and 1,10-phenanthroline.

The molecular structure of the title complex is shown in Fig.1. In the presence of atmosphere, VIV is oxidized to VV. The complex is centrosymmetric dimer formed by two VV complex untis bridged by two µ2-oxido groups. The VV atom is six-coordinated by three oxido O atoms, one O atom from a vanillinate ligand and two N atoms from a 1,10-phenanthroline ligand in a significantly distorted octahedral geometry (Table 1). O3, O4, N1 and N2 are situated in the equatorial plane and O5 and O4i [symmetry code: (i) -x+2, -y+2, -z+1] are in the axial positions. The VV atom deviates from the least-squares plane of O3, O4, N1 and N2 by 0.319 (1) Å. In the complex, V1—O4 is 1.657 (3) Å and V1—O4i is 2.346 (3) Å, which illustrates that it is a very asymmetric bridge. The asymmetric structure is similar to that previously reported (Li et al., 2004; Mokry & Carrano, 1993).

There are extensive C—H···O hydrogen bonds in the crystal structure (Table 2). As shown in Fig. 2, the neighboring binuclear complex molecules are connected by the intermolecular hydrogen bonds into a three-dimensional network.

Related literature top

For general background to vanadium complexes, see: Dong et al. (2000); Thompson et al. (1999); Yuan et al. (2003). For related structures, see: Li et al. (2004); Mokry & Carrano (1993).

Experimental top

Vanillin (0.152 g, 1 mmol) was dissolved in 5 ml absolute methanol and vanadyl sulfate hydrate (0.225 g, 1 mmol) was added to the solution, which was stirred and refluxed for 2 h at 323 K. Then, a methanol solution (5 ml) of 1,10-phenanthroline (0.198 g, 1 mmol) was added to the solution. The mixture was stirred and refluxed for 3 h at 323 K. The obtained brown solution was cooled to room temperature and filtered. The filtrate was kept at room temperature for 30 d. The crystals suitable for X-ray diffraction were obtained.

Refinement top

H atoms were placed in geometrically calculated positions and allowed to ride on their parent atoms, with C—H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 1.2(or 1.5 for methyl)Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. [Symmetry code: (i) -x+2, -y+2, -z+1.]
[Figure 2] Fig. 2. The crystal packing of the title compound with hydrogen bonds (dashed lines).
Di-µ-oxido-bis[(4-formyl-2-methoxyphenolato-κO1)oxido(1,10- phenanthroline-κ2N,N')vanadium(V)] top
Crystal data top
[V2(C8H7O3)2O4(C12H8N2)2]Z = 1
Mr = 828.56F(000) = 424
Triclinic, P1Dx = 1.571 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3453 (18) ÅCell parameters from 943 reflections
b = 9.786 (2) Åθ = 2.5–25.8°
c = 11.090 (3) ŵ = 0.60 mm1
α = 80.097 (2)°T = 298 K
β = 65.672 (1)°Needle, colorless
γ = 71.535 (1)°0.21 × 0.18 × 0.17 mm
V = 875.6 (3) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
3038 independent reflections
Radiation source: fine-focus sealed tube2372 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.884, Tmax = 0.904k = 118
4641 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1054P)2 + 0.2207P]
where P = (Fo2 + 2Fc2)/3
3038 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
[V2(C8H7O3)2O4(C12H8N2)2]γ = 71.535 (1)°
Mr = 828.56V = 875.6 (3) Å3
Triclinic, P1Z = 1
a = 9.3453 (18) ÅMo Kα radiation
b = 9.786 (2) ŵ = 0.60 mm1
c = 11.090 (3) ÅT = 298 K
α = 80.097 (2)°0.21 × 0.18 × 0.17 mm
β = 65.672 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3038 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2372 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.904Rint = 0.046
4641 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.07Δρmax = 0.84 e Å3
3038 reflectionsΔρmin = 0.82 e Å3
254 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.93548 (8)0.89398 (7)0.61983 (7)0.0324 (3)
N11.0193 (4)0.7386 (3)0.4733 (3)0.0337 (7)
N20.7109 (4)0.8658 (3)0.6109 (3)0.0329 (7)
O10.6378 (5)1.4243 (4)1.1968 (4)0.0683 (10)
O20.4949 (4)1.1848 (4)0.8894 (3)0.0544 (9)
O30.7773 (3)1.0430 (3)0.7319 (3)0.0385 (7)
O41.1051 (3)0.9466 (3)0.5544 (3)0.0340 (6)
O50.9616 (4)0.7689 (3)0.7300 (3)0.0439 (7)
C10.7557 (7)1.3424 (6)1.1248 (5)0.0544 (12)
H10.85441.33121.13210.065*
C20.7590 (6)1.2582 (5)1.0265 (5)0.0448 (11)
C30.6170 (5)1.2648 (5)1.0102 (4)0.0434 (10)
H30.51681.32121.06430.052*
C40.6250 (5)1.1877 (5)0.9139 (4)0.0366 (9)
C50.7772 (5)1.1044 (4)0.8284 (4)0.0350 (9)
C60.9175 (5)1.0962 (5)0.8477 (5)0.0435 (10)
H61.01821.03990.79420.052*
C70.9070 (6)1.1723 (5)0.9469 (5)0.0465 (11)
H71.00111.16540.96010.056*
C80.3380 (6)1.2439 (6)0.9822 (6)0.0684 (16)
H8A0.32891.19971.06840.103*
H8B0.25821.22640.95780.103*
H8C0.31951.34590.98400.103*
C91.1750 (5)0.6719 (4)0.4093 (4)0.0379 (9)
H91.25350.69510.42690.046*
C101.2269 (5)0.5683 (4)0.3167 (4)0.0423 (10)
H101.33730.52320.27420.051*
C111.1117 (6)0.5345 (4)0.2897 (4)0.0448 (11)
H111.14380.46560.22870.054*
C120.9468 (5)0.6033 (4)0.3537 (4)0.0398 (10)
C130.9066 (5)0.7047 (4)0.4456 (4)0.0301 (8)
C140.7401 (5)0.7743 (4)0.5200 (4)0.0326 (9)
C150.6154 (5)0.7467 (5)0.4962 (5)0.0419 (10)
C160.4555 (5)0.8190 (5)0.5727 (5)0.0503 (12)
H160.36830.80400.56160.060*
C170.4273 (5)0.9118 (5)0.6636 (5)0.0491 (11)
H170.32080.96080.71420.059*
C180.5583 (5)0.9333 (5)0.6811 (4)0.0407 (10)
H180.53750.99670.74370.049*
C190.8183 (6)0.5772 (5)0.3311 (5)0.0510 (12)
H190.84380.51200.26860.061*
C200.6622 (6)0.6447 (5)0.3981 (5)0.0519 (12)
H200.58130.62540.38090.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0238 (4)0.0321 (4)0.0453 (4)0.0028 (3)0.0170 (3)0.0116 (3)
N10.0333 (18)0.0263 (17)0.0485 (19)0.0051 (14)0.0234 (15)0.0047 (14)
N20.0259 (17)0.0315 (18)0.0425 (19)0.0053 (14)0.0152 (14)0.0043 (14)
O10.067 (3)0.074 (3)0.067 (2)0.010 (2)0.023 (2)0.037 (2)
O20.0297 (16)0.074 (2)0.063 (2)0.0057 (15)0.0158 (15)0.0325 (17)
O30.0272 (14)0.0411 (16)0.0473 (17)0.0006 (12)0.0148 (12)0.0200 (13)
O40.0232 (13)0.0363 (15)0.0449 (15)0.0048 (11)0.0131 (12)0.0143 (12)
O50.0441 (17)0.0433 (17)0.0491 (17)0.0068 (14)0.0247 (14)0.0059 (14)
C10.061 (3)0.060 (3)0.050 (3)0.020 (3)0.025 (3)0.009 (2)
C20.050 (3)0.042 (3)0.050 (3)0.012 (2)0.025 (2)0.007 (2)
C30.038 (2)0.045 (3)0.044 (2)0.0042 (19)0.0143 (19)0.013 (2)
C40.033 (2)0.040 (2)0.037 (2)0.0078 (18)0.0139 (17)0.0046 (18)
C50.036 (2)0.035 (2)0.033 (2)0.0100 (18)0.0114 (17)0.0038 (17)
C60.035 (2)0.041 (2)0.057 (3)0.0017 (18)0.025 (2)0.014 (2)
C70.041 (3)0.051 (3)0.058 (3)0.010 (2)0.028 (2)0.007 (2)
C80.035 (3)0.086 (4)0.079 (4)0.006 (3)0.013 (3)0.033 (3)
C90.030 (2)0.032 (2)0.052 (2)0.0033 (17)0.0182 (19)0.0039 (18)
C100.038 (2)0.031 (2)0.049 (2)0.0012 (18)0.013 (2)0.0095 (19)
C110.058 (3)0.030 (2)0.045 (2)0.007 (2)0.019 (2)0.0094 (19)
C120.048 (3)0.030 (2)0.048 (2)0.0098 (19)0.026 (2)0.0034 (18)
C130.030 (2)0.030 (2)0.033 (2)0.0093 (16)0.0142 (16)0.0009 (16)
C140.028 (2)0.030 (2)0.044 (2)0.0087 (16)0.0190 (17)0.0004 (17)
C150.040 (2)0.038 (2)0.063 (3)0.0146 (19)0.034 (2)0.006 (2)
C160.038 (3)0.052 (3)0.076 (3)0.018 (2)0.037 (2)0.005 (2)
C170.027 (2)0.052 (3)0.068 (3)0.009 (2)0.020 (2)0.002 (2)
C180.027 (2)0.040 (2)0.053 (3)0.0036 (18)0.0163 (19)0.004 (2)
C190.060 (3)0.049 (3)0.064 (3)0.016 (2)0.037 (3)0.014 (2)
C200.057 (3)0.051 (3)0.071 (3)0.020 (2)0.043 (3)0.002 (2)
Geometric parameters (Å, º) top
V1—O31.898 (3)C7—H70.9300
V1—O41.657 (3)C8—H8A0.9600
V1—O51.610 (3)C8—H8B0.9600
V1—O4i2.346 (3)C8—H8C0.9600
V1—N12.148 (3)C9—C101.398 (6)
V1—N22.245 (3)C9—H90.9300
N1—C91.324 (5)C10—C111.372 (6)
N1—C131.355 (5)C10—H100.9300
N2—C181.319 (5)C11—C121.392 (6)
N2—C141.350 (5)C11—H110.9300
O1—C11.196 (6)C12—C131.400 (6)
O2—C41.359 (5)C12—C191.426 (6)
O2—C81.403 (6)C13—C141.425 (6)
O3—C51.314 (5)C14—C151.407 (5)
O4—V1i2.346 (3)C15—C161.395 (7)
C1—C21.459 (6)C15—C201.440 (7)
C1—H10.9300C16—C171.362 (7)
C2—C71.383 (7)C16—H160.9300
C2—C31.393 (6)C17—C181.398 (6)
C3—C41.375 (6)C17—H170.9300
C3—H30.9300C18—H180.9300
C4—C51.416 (6)C19—C201.335 (7)
C5—C61.390 (6)C19—H190.9300
C6—C71.385 (6)C20—H200.9300
C6—H60.9300
O5—V1—O4105.63 (14)C6—C7—H7119.4
O5—V1—O399.73 (14)O2—C8—H8A109.5
O4—V1—O3105.13 (13)O2—C8—H8B109.5
O5—V1—N191.67 (14)H8A—C8—H8B109.5
O4—V1—N193.98 (13)O2—C8—H8C109.5
O3—V1—N1154.01 (13)H8A—C8—H8C109.5
O5—V1—N299.66 (13)H8B—C8—H8C109.5
O4—V1—N2152.20 (13)N1—C9—C10123.1 (4)
O3—V1—N281.37 (12)N1—C9—H9118.5
N1—V1—N273.69 (12)C10—C9—H9118.5
O5—V1—O4i172.60 (13)C11—C10—C9118.7 (4)
O4—V1—O4i77.95 (12)C11—C10—H10120.6
O3—V1—O4i85.35 (11)C9—C10—H10120.6
N1—V1—O4i81.55 (11)C10—C11—C12120.0 (4)
N2—V1—O4i75.66 (10)C10—C11—H11120.0
C9—N1—C13117.7 (3)C12—C11—H11120.0
C9—N1—V1123.9 (3)C11—C12—C13117.1 (4)
C13—N1—V1118.3 (3)C11—C12—C19124.3 (4)
C18—N2—C14118.8 (3)C13—C12—C19118.6 (4)
C18—N2—V1126.4 (3)N1—C13—C12123.4 (4)
C14—N2—V1114.8 (2)N1—C13—C14116.2 (3)
C4—O2—C8118.0 (4)C12—C13—C14120.4 (3)
C5—O3—V1132.1 (3)N2—C14—C15123.2 (4)
V1—O4—V1i102.05 (12)N2—C14—C13117.0 (3)
O1—C1—C2126.1 (5)C15—C14—C13119.9 (4)
O1—C1—H1117.0C16—C15—C14116.6 (4)
C2—C1—H1117.0C16—C15—C20125.5 (4)
C7—C2—C3119.6 (4)C14—C15—C20117.9 (4)
C7—C2—C1119.1 (4)C17—C16—C15119.8 (4)
C3—C2—C1121.3 (4)C17—C16—H16120.1
C4—C3—C2119.9 (4)C15—C16—H16120.1
C4—C3—H3120.1C16—C17—C18120.0 (4)
C2—C3—H3120.1C16—C17—H17120.0
O2—C4—C3125.1 (4)C18—C17—H17120.0
O2—C4—C5114.2 (4)N2—C18—C17121.6 (4)
C3—C4—C5120.7 (4)N2—C18—H18119.2
O3—C5—C6123.8 (4)C17—C18—H18119.2
O3—C5—C4117.4 (4)C20—C19—C12121.2 (4)
C6—C5—C4118.8 (4)C20—C19—H19119.4
C7—C6—C5119.8 (4)C12—C19—H19119.4
C7—C6—H6120.1C19—C20—C15121.9 (4)
C5—C6—H6120.1C19—C20—H20119.1
C2—C7—C6121.2 (4)C15—C20—H20119.1
C2—C7—H7119.4
O5—V1—N1—C977.6 (3)C3—C4—C5—C63.1 (6)
O4—V1—N1—C928.2 (3)O3—C5—C6—C7175.7 (4)
O3—V1—N1—C9166.0 (3)C4—C5—C6—C71.8 (6)
N2—V1—N1—C9177.1 (3)C3—C2—C7—C62.3 (7)
O4i—V1—N1—C9105.4 (3)C1—C2—C7—C6176.7 (4)
O5—V1—N1—C13101.4 (3)C5—C6—C7—C20.9 (7)
O4—V1—N1—C13152.8 (3)C13—N1—C9—C100.7 (6)
O3—V1—N1—C1315.1 (5)V1—N1—C9—C10178.3 (3)
N2—V1—N1—C131.8 (3)N1—C9—C10—C110.5 (6)
O4i—V1—N1—C1375.6 (3)C9—C10—C11—C120.2 (6)
O5—V1—N2—C1891.8 (3)C10—C11—C12—C130.7 (6)
O4—V1—N2—C18112.8 (4)C10—C11—C12—C19179.1 (4)
O3—V1—N2—C186.6 (3)C9—N1—C13—C120.1 (6)
N1—V1—N2—C18179.2 (4)V1—N1—C13—C12178.9 (3)
O4i—V1—N2—C1894.0 (3)C9—N1—C13—C14177.6 (3)
O5—V1—N2—C1490.9 (3)V1—N1—C13—C141.4 (4)
O4—V1—N2—C1464.4 (4)C11—C12—C13—N10.5 (6)
O3—V1—N2—C14170.6 (3)C19—C12—C13—N1179.2 (4)
N1—V1—N2—C142.0 (3)C11—C12—C13—C14176.8 (4)
O4i—V1—N2—C1483.2 (3)C19—C12—C13—C143.4 (6)
O5—V1—O3—C555.9 (3)C18—N2—C14—C150.1 (6)
O4—V1—O3—C553.3 (3)V1—N2—C14—C15177.6 (3)
N1—V1—O3—C5170.7 (3)C18—N2—C14—C13179.5 (3)
N2—V1—O3—C5154.3 (3)V1—N2—C14—C132.0 (4)
O4i—V1—O3—C5129.5 (3)N1—C13—C14—N20.5 (5)
O5—V1—O4—V1i173.33 (13)C12—C13—C14—N2177.1 (3)
O3—V1—O4—V1i81.74 (13)N1—C13—C14—C15179.1 (3)
N1—V1—O4—V1i80.47 (12)C12—C13—C14—C153.3 (6)
N2—V1—O4—V1i18.6 (3)N2—C14—C15—C160.3 (6)
O4i—V1—O4—V1i0.0C13—C14—C15—C16179.9 (4)
O1—C1—C2—C7177.4 (5)N2—C14—C15—C20178.9 (4)
O1—C1—C2—C31.6 (8)C13—C14—C15—C201.5 (6)
C7—C2—C3—C41.0 (7)C14—C15—C16—C170.6 (6)
C1—C2—C3—C4178.0 (4)C20—C15—C16—C17179.2 (4)
C8—O2—C4—C311.6 (7)C15—C16—C17—C180.6 (7)
C8—O2—C4—C5169.6 (4)C14—N2—C18—C170.2 (6)
C2—C3—C4—O2179.5 (4)V1—N2—C18—C17177.3 (3)
C2—C3—C4—C51.7 (6)C16—C17—C18—N20.2 (7)
V1—O3—C5—C617.7 (6)C11—C12—C19—C20178.5 (4)
V1—O3—C5—C4164.7 (3)C13—C12—C19—C201.7 (7)
O2—C4—C5—O34.3 (5)C12—C19—C20—C150.1 (8)
C3—C4—C5—O3174.6 (3)C16—C15—C20—C19178.3 (5)
O2—C4—C5—C6178.0 (4)C14—C15—C20—C190.2 (7)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1ii0.932.483.393 (6)168
C16—H16···O4iii0.932.443.192 (5)138
C8—H8A···O5iv0.962.683.280 (6)121
C11—H11···O5v0.932.673.312 (5)127
C1—H1···O5vi0.932.623.441 (6)148
Symmetry codes: (ii) x+1, y1, z1; (iii) x1, y, z; (iv) x+1, y+2, z+2; (v) x+2, y+1, z+1; (vi) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formula[V2(C8H7O3)2O4(C12H8N2)2]
Mr828.56
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.3453 (18), 9.786 (2), 11.090 (3)
α, β, γ (°)80.097 (2), 65.672 (1), 71.535 (1)
V3)875.6 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.21 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.884, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
4641, 3038, 2372
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.177, 1.07
No. of reflections3038
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.82

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
V1—O31.898 (3)V1—O4i2.346 (3)
V1—O41.657 (3)V1—N12.148 (3)
V1—O51.610 (3)V1—N22.245 (3)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1ii0.932.483.393 (6)168
C16—H16···O4iii0.932.443.192 (5)138
C8—H8A···O5iv0.962.683.280 (6)121
C11—H11···O5v0.932.673.312 (5)127
C1—H1···O5vi0.932.623.441 (6)148
Symmetry codes: (ii) x+1, y1, z1; (iii) x1, y, z; (iv) x+1, y+2, z+2; (v) x+2, y+1, z+1; (vi) x+2, y+2, z+2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, Y. H., Narla, R. K., Sudbeck, E. & Uckun, F. M. (2000). J. Inorg. Biochem. 78, 321–330.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, L. Z., Xu, T., Wang, D. Q. & Ji, H. W. (2004). Chin. J. Inorg. Chem. 20, 236–240.  Google Scholar
First citationMokry, L. M. & Carrano, C. J. (1993). Inorg. Chem. 32, 6119–6121.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561–2571.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYuan, M., Wang, E., Lu, Y., Wang, S., Li, Y., Wang, L. & Hu, C. (2003). Inorg. Chim. Acta, 344, 257–261.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds