metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-10,21-Di­methyl-3,6,14,17-tetra­aza­tri­cyclo­[17.3.1.18,12]tetra­cosa-1(23),8(24),9,11,19,21-hexa­ene-23,24-diolato-κ8N3,N6,O23,O24:N14,N17,O23,O24]bis­­[(nitrato-κ2O,O′)nickel(II)]

aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: majf247nenu@yahoo.com.cn

(Received 11 March 2009; accepted 19 March 2009; online 18 April 2009)

In the title centrosymmetric dinuclear nickel complex, [Ni2(C22H30N4O2)(NO3)2], each of the two NiII atoms has a distorted octa­hedral geometry, defined by two N atoms and two O atoms from the macrocyclic ligand and two O atoms from a chelating nitrate anion. The two Ni atoms are bridged by two phenolate O atoms, forming a four-membered Ni2O2 ring.

Related literature

For general background, see: Caldwell & Crumbliss (1998[Caldwell, D. C. & Crumbliss, L. A. (1998). Inorg. Chem. 37, 1906-1912.]); Rosa et al. (1998[Rosa, T. D., Young, G. V. & Coucouvanis, D. (1998). Inorg. Chem. 37, 5042-5043.]). For related structures, see: Aromi et al. (2002[Aromi, G., Gamez, P., Roubeau, O., Carrero-Berzal, P., Kooijrnan, H. L., Spek, A. L., Driesser, W. & Reeddijk, J. (2002). Eur. J. Inorg. Chem. 5, 1046-1048.]). For the ligand synthesis, see: Mandal & Nag (1986[Mandal, S. K. & Nag, K. (1986). J. Org. Chem. 51, 3900-3902.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C22H30N4O2)(NO3)2]

  • Mr = 623.90

  • Trigonal, [R \overline 3]

  • a = 25.020 (5) Å

  • c = 10.616 (5) Å

  • V = 5755 (3) Å3

  • Z = 9

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.25 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.495, Tmax = 0.609 (expected range = 0.554–0.682)

  • 9432 measured reflections

  • 2213 independent reflections

  • 1745 reflections with I > 2σ(I)

  • Rint = 0.107

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.117

  • S = 1.03

  • 2213 reflections

  • 178 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.06 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 2.000 (2)
Ni1—O1i 2.006 (2)
Ni1—N2 2.038 (3)
Ni1—N1 2.054 (3)
Ni1—O3 2.134 (3)
Ni1—O2 2.183 (3)
Symmetry code: (i) [-x+{\script{2\over 3}}, -y+{\script{1\over 3}}, -z+{\script{1\over 3}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Crown ether compounds have attracted much interest as a result of their significance in biological transport systems (Caldwell & Crumbliss, 1998). In addition, crown ether compounds are found to have functions in selective molecular recognition (Rosa et al., 1998). To further widen the scope of applications of crown ether, there is a need to prepare new series of crown ether compounds. In this work, a new dinuclear nickel(II) compound has been synthesized and its struture is reported here.

As shown in Fig. 1, the title compound is a centrosymmetric dinuclear nickel complex. The coordination environment around each NiII atom is distorted octahedral, with one N atom and one O atom from the macrocyclic ligand and two O atoms from the nitrate anion occupying the equatorial plane, and the other N atom and O atom from the ligand occupying the axial positions. In the complex molecule, two Ni atoms are bridged by two phenolate O atoms, generating a four-membered Ni2O2 ring, with a Ni···Ni distance of 2.9737 (10) Å. The Ni—O and Ni—N distances are normal (Aromi et al., 2002).

Related literature top

For general background, see: Caldwell & Crumbliss (1998); Rosa et al. (1998). For related structures, see: Aromi et al. (2002). For the ligand synthesis, see: Mandal & Nag (1986).

Experimental top

The macrocyclic ligand, C22H32N4O2 (H2L), was prepared by the reported procedure (Mandal & Nag, 1986). A mixture of H2L (0.10 g, 0.26 mmol) and Ni(NO3)2.6H2O (0.15 g, 0.52 mmol) in methanol (20 ml) was stirred for 10 min. The resulting solution was filtered. Green single crystals were obtained by slow evaporation of the filtrate at room temperature (yield 56%).

Refinement top

H atoms bound to C atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 (aromatic), 0.97 (CH2) and 0.96 (CH3) Å and with Uiso = 1.2(1.5 for methyl)Ueq(C). The imino H atoms were located in a difference Fourier map and refined with Uiso(H) = 0.128 Å2. The highest residual electron density was found 1.03Å from Ni1 and the deepest hole 0.76 Å from Ni1.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are draw at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x + 2/3, -y + 1/3, -z + 1/3.]
[µ-10,21-Dimethyl-3,6,14,17-tetraazatricyclo[17.3.1.18,12]tetracosa- 1(23),8(24),9,11,19,21-hexaene-23,24-diolato- κ8N3,N6,O23,O24:N14, N17,O23,O24]bis[(nitrato- κ2O,O')nickel(II)] top
Crystal data top
[Ni2(C22H30N4O2)(NO3)2]Dx = 1.620 Mg m3
Mr = 623.90Mo Kα radiation, λ = 0.71069 Å
Trigonal, R3Cell parameters from 3000 reflections
Hall symbol: -R 3θ = 2.4–28.4°
a = 25.020 (5) ŵ = 1.53 mm1
c = 10.616 (5) ÅT = 293 K
V = 5755 (3) Å3Block, green
Z = 90.40 × 0.30 × 0.25 mm
F(000) = 2916
Data collection top
Bruker APEX CCD
diffractometer
2213 independent reflections
Radiation source: fine-focus sealed tube1745 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.107
ϕ and ω scansθmax = 24.9°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1529
Tmin = 0.495, Tmax = 0.609k = 2923
9432 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.066P)2]
where P = (Fo2 + 2Fc2)/3
2213 reflections(Δ/σ)max = 0.007
178 parametersΔρmax = 1.06 e Å3
1 restraintΔρmin = 0.35 e Å3
Crystal data top
[Ni2(C22H30N4O2)(NO3)2]Z = 9
Mr = 623.90Mo Kα radiation
Trigonal, R3µ = 1.53 mm1
a = 25.020 (5) ÅT = 293 K
c = 10.616 (5) Å0.40 × 0.30 × 0.25 mm
V = 5755 (3) Å3
Data collection top
Bruker APEX CCD
diffractometer
2213 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1745 reflections with I > 2σ(I)
Tmin = 0.495, Tmax = 0.609Rint = 0.107
9432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.06 e Å3
2213 reflectionsΔρmin = 0.35 e Å3
178 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.355561 (19)0.13534 (2)0.25357 (4)0.03150 (19)
C10.04882 (19)0.0620 (2)0.3314 (4)0.0658 (13)
H1A0.04880.07700.41470.099*
H1B0.03720.09480.27170.099*
H1C0.01990.04750.32760.099*
C20.11262 (17)0.00973 (17)0.3005 (3)0.0431 (9)
C30.12561 (16)0.01995 (17)0.1862 (3)0.0410 (9)
H30.09470.00560.12550.049*
C40.18315 (15)0.07079 (16)0.1570 (3)0.0353 (8)
C50.22847 (15)0.09460 (15)0.2510 (3)0.0347 (8)
C60.16018 (17)0.01062 (17)0.3868 (3)0.0446 (9)
H60.15360.01110.46170.054*
C70.21738 (16)0.06230 (16)0.3656 (3)0.0374 (8)
C80.26663 (17)0.08766 (18)0.4652 (3)0.0443 (9)
H8A0.27460.12840.48920.053*
H8B0.25150.06140.53910.053*
C90.37778 (18)0.13034 (17)0.5104 (3)0.0430 (9)
H9A0.41120.12210.49490.052*
H9B0.36460.11960.59720.052*
C100.40046 (18)0.19842 (17)0.4892 (3)0.0421 (9)
H10A0.37040.20850.52240.050*
H10B0.43900.22300.53420.050*
C110.47350 (15)0.23666 (16)0.3077 (3)0.0383 (8)
H11A0.48240.20310.30910.046*
H11B0.50220.26850.36440.046*
N10.32528 (14)0.09201 (14)0.4244 (3)0.0377 (7)
N20.41009 (14)0.21377 (13)0.3532 (2)0.0355 (7)
N30.37310 (14)0.05216 (15)0.1596 (3)0.0479 (8)
O10.28230 (10)0.14687 (10)0.23716 (19)0.0342 (5)
O20.41509 (12)0.09599 (12)0.2220 (2)0.0455 (6)
O30.32302 (12)0.05220 (12)0.1480 (2)0.0459 (6)
O40.38022 (15)0.01126 (15)0.1141 (4)0.0853 (11)
HN10.320 (3)0.055 (3)0.423 (6)0.128*
HN20.401 (3)0.242 (2)0.336 (6)0.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0299 (3)0.0299 (3)0.0353 (3)0.0154 (2)0.00202 (16)0.00065 (16)
C10.041 (3)0.060 (3)0.081 (3)0.014 (2)0.014 (2)0.004 (2)
C20.037 (2)0.035 (2)0.052 (2)0.0137 (17)0.0119 (16)0.0027 (16)
C30.033 (2)0.038 (2)0.055 (2)0.0200 (18)0.0023 (16)0.0069 (16)
C40.0299 (19)0.0322 (19)0.0451 (18)0.0165 (16)0.0011 (14)0.0002 (14)
C50.0322 (19)0.033 (2)0.0424 (18)0.0193 (17)0.0038 (14)0.0001 (14)
C60.044 (2)0.042 (2)0.049 (2)0.022 (2)0.0114 (17)0.0067 (16)
C70.037 (2)0.037 (2)0.0402 (18)0.0193 (17)0.0053 (15)0.0017 (14)
C80.043 (2)0.051 (2)0.0380 (18)0.024 (2)0.0040 (15)0.0054 (16)
C90.047 (2)0.045 (2)0.0366 (18)0.0226 (19)0.0053 (15)0.0029 (15)
C100.048 (2)0.043 (2)0.0359 (18)0.0227 (19)0.0046 (15)0.0049 (15)
C110.033 (2)0.034 (2)0.049 (2)0.0181 (17)0.0105 (15)0.0059 (15)
N10.0404 (18)0.0370 (18)0.0381 (14)0.0211 (16)0.0010 (12)0.0024 (13)
N20.0366 (17)0.0327 (17)0.0383 (15)0.0182 (15)0.0035 (12)0.0001 (12)
N30.0349 (19)0.040 (2)0.067 (2)0.0180 (16)0.0012 (15)0.0111 (16)
O10.0289 (13)0.0311 (13)0.0408 (12)0.0137 (11)0.0007 (10)0.0025 (10)
O20.0341 (14)0.0377 (15)0.0634 (16)0.0171 (13)0.0070 (12)0.0076 (12)
O30.0329 (15)0.0434 (16)0.0570 (15)0.0159 (13)0.0059 (11)0.0075 (11)
O40.058 (2)0.062 (2)0.139 (3)0.0324 (18)0.0003 (19)0.048 (2)
Geometric parameters (Å, º) top
Ni1—O12.000 (2)C7—C81.502 (5)
Ni1—O1i2.006 (2)C8—N11.481 (5)
Ni1—N22.038 (3)C8—H8A0.9700
Ni1—N12.054 (3)C8—H8B0.9700
Ni1—O32.134 (3)C9—N11.489 (4)
Ni1—O22.183 (3)C9—C101.519 (5)
Ni1—Ni1i2.9737 (10)C9—H9A0.9700
C1—C21.510 (5)C9—H9B0.9700
C1—H1A0.9600C10—N21.483 (4)
C1—H1B0.9600C10—H10A0.9700
C1—H1C0.9600C10—H10B0.9700
C2—C31.374 (5)C11—N21.473 (4)
C2—C61.382 (5)C11—C4i1.505 (5)
C3—C41.398 (5)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—C51.400 (5)N1—HN10.87 (6)
C4—C11i1.505 (5)N2—HN20.86 (6)
C5—O11.336 (4)N3—O41.223 (4)
C5—C71.408 (5)N3—O31.260 (4)
C6—C71.386 (5)N3—O21.262 (4)
C6—H60.9300
O1—Ni1—O1i84.17 (9)N1—C8—C7113.5 (3)
O1—Ni1—N297.29 (10)N1—C8—H8A108.9
O1i—Ni1—N287.95 (10)C7—C8—H8A108.9
O1—Ni1—N191.74 (10)N1—C8—H8B108.9
O1i—Ni1—N1172.81 (10)C7—C8—H8B108.9
N2—Ni1—N186.72 (12)H8A—C8—H8B107.7
O1—Ni1—O399.46 (9)N1—C9—C10110.3 (3)
O1i—Ni1—O391.39 (10)N1—C9—H9A109.6
N2—Ni1—O3163.09 (11)C10—C9—H9A109.6
N1—Ni1—O395.11 (11)N1—C9—H9B109.6
O1—Ni1—O2158.83 (9)C10—C9—H9B109.6
O1i—Ni1—O292.93 (9)H9A—C9—H9B108.1
N2—Ni1—O2103.57 (11)N2—C10—C9110.8 (3)
N1—Ni1—O292.99 (11)N2—C10—H10A109.5
O3—Ni1—O259.57 (10)C9—C10—H10A109.5
O1—Ni1—Ni1i42.16 (6)N2—C10—H10B109.5
O1i—Ni1—Ni1i42.01 (6)C9—C10—H10B109.5
N2—Ni1—Ni1i93.51 (8)H10A—C10—H10B108.1
N1—Ni1—Ni1i133.62 (9)N2—C11—C4i112.7 (3)
O3—Ni1—Ni1i97.29 (7)N2—C11—H11A109.0
O2—Ni1—Ni1i131.44 (7)C4i—C11—H11A109.0
C2—C1—H1A109.5N2—C11—H11B109.0
C2—C1—H1B109.5C4i—C11—H11B109.0
H1A—C1—H1B109.5H11A—C11—H11B107.8
C2—C1—H1C109.5C8—N1—C9113.0 (3)
H1A—C1—H1C109.5C8—N1—Ni1112.8 (2)
H1B—C1—H1C109.5C9—N1—Ni1103.2 (2)
C3—C2—C6117.3 (3)C8—N1—HN1108 (4)
C3—C2—C1121.5 (4)C9—N1—HN1108 (4)
C6—C2—C1121.2 (4)Ni1—N1—HN1112 (4)
C2—C3—C4123.0 (3)C11—N2—C10115.1 (3)
C2—C3—H3118.5C11—N2—Ni1106.0 (2)
C4—C3—H3118.5C10—N2—Ni1108.2 (2)
C3—C4—C5118.4 (3)C11—N2—HN2107 (4)
C3—C4—C11i118.1 (3)C10—N2—HN2110 (4)
C5—C4—C11i123.5 (3)Ni1—N2—HN2110 (4)
O1—C5—C4122.9 (3)O4—N3—O3121.5 (3)
O1—C5—C7118.0 (3)O4—N3—O2121.9 (3)
C4—C5—C7119.1 (3)O3—N3—O2116.6 (3)
C2—C6—C7122.2 (3)C5—O1—Ni1113.40 (19)
C2—C6—H6118.9C5—O1—Ni1i125.52 (19)
C7—C6—H6118.9Ni1—O1—Ni1i95.83 (9)
C6—C7—C5119.4 (3)N3—O2—Ni190.8 (2)
C6—C7—C8121.7 (3)N3—O3—Ni193.11 (19)
C5—C7—C8118.7 (3)
C6—C2—C3—C43.1 (5)O2—Ni1—N2—C1132.8 (2)
C1—C2—C3—C4176.2 (4)Ni1i—Ni1—N2—C11101.34 (19)
C2—C3—C4—C53.7 (5)O1—Ni1—N2—C1092.5 (2)
C2—C3—C4—C11i175.9 (3)O1i—Ni1—N2—C10176.3 (2)
C3—C4—C5—O1172.4 (3)N1—Ni1—N2—C101.1 (2)
C11i—C4—C5—O18.1 (5)O3—Ni1—N2—C1095.6 (4)
C3—C4—C5—C77.8 (5)O2—Ni1—N2—C1091.1 (2)
C11i—C4—C5—C7171.7 (3)Ni1i—Ni1—N2—C10134.7 (2)
C3—C2—C6—C75.8 (5)C4—C5—O1—Ni1120.4 (3)
C1—C2—C6—C7173.5 (4)C7—C5—O1—Ni159.4 (3)
C2—C6—C7—C51.7 (5)C4—C5—O1—Ni1i4.0 (4)
C2—C6—C7—C8173.8 (3)C7—C5—O1—Ni1i175.8 (2)
O1—C5—C7—C6174.9 (3)O1i—Ni1—O1—C5132.9 (2)
C4—C5—C7—C65.2 (5)N2—Ni1—O1—C5139.9 (2)
O1—C5—C7—C80.7 (5)N1—Ni1—O1—C553.0 (2)
C4—C5—C7—C8179.1 (3)O3—Ni1—O1—C542.4 (2)
C6—C7—C8—N1123.4 (4)O2—Ni1—O1—C549.8 (3)
C5—C7—C8—N161.0 (4)Ni1i—Ni1—O1—C5132.9 (2)
N1—C9—C10—N248.9 (4)O1i—Ni1—O1—Ni1i0.0
C7—C8—N1—C9166.4 (3)N2—Ni1—O1—Ni1i87.17 (11)
C7—C8—N1—Ni149.9 (4)N1—Ni1—O1—Ni1i174.08 (11)
C10—C9—N1—C876.0 (4)O3—Ni1—O1—Ni1i90.44 (10)
C10—C9—N1—Ni146.1 (3)O2—Ni1—O1—Ni1i83.0 (3)
N2—Ni1—N1—C896.4 (2)O4—N3—O2—Ni1179.5 (4)
O3—Ni1—N1—C8100.4 (2)O3—N3—O2—Ni10.4 (3)
O2—Ni1—N1—C8160.1 (2)O1—Ni1—O2—N38.2 (4)
Ni1i—Ni1—N1—C84.7 (3)O1i—Ni1—O2—N389.6 (2)
N2—Ni1—N1—C925.8 (2)N2—Ni1—O2—N3178.2 (2)
O3—Ni1—N1—C9137.3 (2)N1—Ni1—O2—N394.4 (2)
O2—Ni1—N1—C977.6 (2)O3—Ni1—O2—N30.24 (19)
Ni1i—Ni1—N1—C9117.5 (2)Ni1i—Ni1—O2—N371.0 (2)
C4i—C11—N2—C10169.3 (3)O4—N3—O3—Ni1179.5 (4)
C4i—C11—N2—Ni171.2 (3)O2—N3—O3—Ni10.4 (3)
C9—C10—N2—C1194.0 (4)O1—Ni1—O3—N3176.7 (2)
C9—C10—N2—Ni124.3 (4)O1i—Ni1—O3—N392.3 (2)
O1—Ni1—N2—C11143.54 (19)N2—Ni1—O3—N34.8 (5)
O1i—Ni1—N2—C1159.7 (2)N1—Ni1—O3—N390.7 (2)
N1—Ni1—N2—C11125.1 (2)O2—Ni1—O3—N30.24 (19)
O3—Ni1—N2—C1128.3 (5)Ni1i—Ni1—O3—N3134.08 (19)
Symmetry code: (i) x+2/3, y+1/3, z+1/3.

Experimental details

Crystal data
Chemical formula[Ni2(C22H30N4O2)(NO3)2]
Mr623.90
Crystal system, space groupTrigonal, R3
Temperature (K)293
a, c (Å)25.020 (5), 10.616 (5)
V3)5755 (3)
Z9
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.495, 0.609
No. of measured, independent and
observed [I > 2σ(I)] reflections
9432, 2213, 1745
Rint0.107
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.03
No. of reflections2213
No. of parameters178
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.06, 0.35

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O12.000 (2)Ni1—N12.054 (3)
Ni1—O1i2.006 (2)Ni1—O32.134 (3)
Ni1—N22.038 (3)Ni1—O22.183 (3)
Symmetry code: (i) x+2/3, y+1/3, z+1/3.
 

Acknowledgements

We thank the National Natural Science Foundation of China (grant No. 20471014), the Program for New Century Excellent Talents in Chinese Universities (grant No. NCET-05-0320), the Fok Ying Tung Education Foundation and the Analysis and Testing Foundation of Northeast Normal University for support.

References

First citationAromi, G., Gamez, P., Roubeau, O., Carrero-Berzal, P., Kooijrnan, H. L., Spek, A. L., Driesser, W. & Reeddijk, J. (2002). Eur. J. Inorg. Chem. 5, 1046–1048.  CrossRef Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaldwell, D. C. & Crumbliss, L. A. (1998). Inorg. Chem. 37, 1906–1912.  Web of Science CrossRef CAS Google Scholar
First citationMandal, S. K. & Nag, K. (1986). J. Org. Chem. 51, 3900–3902.  CrossRef CAS Web of Science Google Scholar
First citationRosa, T. D., Young, G. V. & Coucouvanis, D. (1998). Inorg. Chem. 37, 5042–5043.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds