Download citation
Download citation
link to html
The title compound, [Ir(C8H4F3O2S)(C12H10N)2]·C4H8O2, contains two cyclo­metallated 3-methyl-2-phenyl­pyridine ligands and one thenoyltrifluoro­acetonate ligand. The central IrIII atom has a distorted octa­hedral coordination geometry, with the C atoms being cis and the N atoms trans.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807031145/hy2069sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807031145/hy2069Isup2.hkl
Contains datablock I

CCDC reference: 657514

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.031
  • wR factor = 0.079
  • Data-to-parameter ratio = 14.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for C2 - C3 .. 9.74 su PLAT230_ALERT_2_B Hirshfeld Test Diff for C3 - C4 .. 7.03 su
Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.06 PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 4 PLAT213_ALERT_2_C Atom C3 has ADP max/min Ratio ............. 3.30 prola PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.37 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.33 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for S1 - C4 .. 6.54 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C3 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C33
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 8 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In recent years, cyclometalated iridium complexes have been extensively investigated due to their promise as highly efficient phosphorescent emitters in organic light-emitting devices (OLEDs) (Lamansky et al., 2001b; Huo et al., 2006) and the other applications such as oxygen sensors (DeRosa et al., 2004) and biological labeling reagents (Lo et al., 2003). In general, heteroleptic cyclometalated iridium complexes have monoanionic derivatives of bidentate o-pyridylarene or o-pyridylheterocycle and ancillary ligands. In this paper, we utilize 3-methyl-2-phenylpyridine (mpp) as the cyclometalating ligand and thenoyltrifluoroacetone (tta) as the ancillary ligand to synthesize the title compound, (I). Compound (I) emits bright-yellow light under excitation of UV light, implying that it may find application in OLEDs as a highly efficient phosphorescent emitter.

Compound (I) shows a distorted octahedral coordination geometry around the Ir atom, formed by two mpp ligands and one tta ligand. The asymmetric unit contains one ethyl acetate solvent molecule (Fig. 1). The mpp ligands adopt a mutual eclipsed configuration with the N1 and N2 atoms residing at trans positions. The Ir—N distances are 2.041 (4)Å and 2.036 (4)Å (Table 1). The cyclometalated carbon atoms C20 and C26 are at cis positions with Ir—C distances of 1.986 (4)Å and 1.982 (4) Å. The Ir—C average bond distance (1.984 Å) is shorter than the Ir—N average bond distance (2.039 Å). This is similar to previously reported examples, including [(ppy)2Ir(acac)], [(tpy)2Ir(acac)] (Lamansky et al., 2001a) and [(dppy)2Ir(acac)] (Xu et al., 2005). The tta ligand displays an O,O'-chelating coordination mode, and the distances of Ir—O are 2.170 (3)Å and 2.171 (3) Å. All other features appear to be normal.

Related literature top

For related literature, see: DeRosa et al. (2004); Huo et al. (2006); Lamansky et al. (2001a, 2001b); Lo et al. (2003); Xu et al. (2005).

Experimental top

Compound (I) was obtained in two steps using standard method (Lamansky et al., 2001a). IrCl3.3H2O (0.178 g, 0.51 mmol), mpp (0.20 g, 1.26 mmol), 2-ethoxyethanol (9 ml) and water (3 ml) were heated to 393 K for 24 h under a nitrogen atmosphere. After cooling to room temperature, the precipitate was collected by filtration, washed with water and methanol, then vacuum dried. A mixture of the above-obtained chloride-bridged dimer (0.113 g, 0.10 mmol), tta (0.067 g, 0.25 mmol) and Na2CO3 (0.106 g, 1.0 mmol) in 2-ethoxyethanol (10 ml) was refluxed for 16 h under a nitrogen atmosphere. An excess of water was added after the solution was cooled to room temperature. Then the precipitate was collected by filtration and washed with methanol. The crude product was purified by column chromatography on silica gel with ethyl acetate/petroleum ether (1:10, v/v) as the eluent. Crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent.

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å (CH), 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C), and with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C). The highest residual electron density was found 0.88 Å from atom Ir1 and the deepest hole 0.55 Å from atom S1.

Structure description top

In recent years, cyclometalated iridium complexes have been extensively investigated due to their promise as highly efficient phosphorescent emitters in organic light-emitting devices (OLEDs) (Lamansky et al., 2001b; Huo et al., 2006) and the other applications such as oxygen sensors (DeRosa et al., 2004) and biological labeling reagents (Lo et al., 2003). In general, heteroleptic cyclometalated iridium complexes have monoanionic derivatives of bidentate o-pyridylarene or o-pyridylheterocycle and ancillary ligands. In this paper, we utilize 3-methyl-2-phenylpyridine (mpp) as the cyclometalating ligand and thenoyltrifluoroacetone (tta) as the ancillary ligand to synthesize the title compound, (I). Compound (I) emits bright-yellow light under excitation of UV light, implying that it may find application in OLEDs as a highly efficient phosphorescent emitter.

Compound (I) shows a distorted octahedral coordination geometry around the Ir atom, formed by two mpp ligands and one tta ligand. The asymmetric unit contains one ethyl acetate solvent molecule (Fig. 1). The mpp ligands adopt a mutual eclipsed configuration with the N1 and N2 atoms residing at trans positions. The Ir—N distances are 2.041 (4)Å and 2.036 (4)Å (Table 1). The cyclometalated carbon atoms C20 and C26 are at cis positions with Ir—C distances of 1.986 (4)Å and 1.982 (4) Å. The Ir—C average bond distance (1.984 Å) is shorter than the Ir—N average bond distance (2.039 Å). This is similar to previously reported examples, including [(ppy)2Ir(acac)], [(tpy)2Ir(acac)] (Lamansky et al., 2001a) and [(dppy)2Ir(acac)] (Xu et al., 2005). The tta ligand displays an O,O'-chelating coordination mode, and the distances of Ir—O are 2.170 (3)Å and 2.171 (3) Å. All other features appear to be normal.

For related literature, see: DeRosa et al. (2004); Huo et al. (2006); Lamansky et al. (2001a, 2001b); Lo et al. (2003); Xu et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Bis[2-(3-methyl-2-pyridyl)phenyl-κ2C1,N]˘1,1,1-trifluoro-3-thenoylpropan-2-onato-κ2O,O')iridium(III) ethyl acetate solvate top
Crystal data top
[Ir(C8H4F3O2S)(C12H10N)2]·C4H8O2Z = 2
Mr = 837.90F(000) = 828
Triclinic, P1Dx = 1.737 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 11.4070 (8) ÅCell parameters from 8940 reflections
b = 12.889 (1) Åθ = 1.7–26.0°
c = 12.899 (2) ŵ = 4.29 mm1
α = 68.874 (1)°T = 293 K
β = 65.149 (2)°Block, orange
γ = 78.145 (1)°0.49 × 0.32 × 0.19 mm
V = 1601.9 (3) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
6129 independent reflections
Radiation source: fine-focus sealed tube5681 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.211, Tmax = 0.445k = 1315
8980 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0455P)2 + 1.8469P]
where P = (Fo2 + 2Fc2)/3
6129 reflections(Δ/σ)max < 0.001
426 parametersΔρmax = 2.03 e Å3
2 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Ir(C8H4F3O2S)(C12H10N)2]·C4H8O2γ = 78.145 (1)°
Mr = 837.90V = 1601.9 (3) Å3
Triclinic, P1Z = 2
a = 11.4070 (8) ÅMo Kα radiation
b = 12.889 (1) ŵ = 4.29 mm1
c = 12.899 (2) ÅT = 293 K
α = 68.874 (1)°0.49 × 0.32 × 0.19 mm
β = 65.149 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
6129 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5681 reflections with I > 2σ(I)
Tmin = 0.211, Tmax = 0.445Rint = 0.017
8980 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0312 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.05Δρmax = 2.03 e Å3
6129 reflectionsΔρmin = 0.98 e Å3
426 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.179556 (14)0.182767 (14)0.202107 (14)0.02173 (7)
C10.4506 (5)0.1622 (6)0.4606 (5)0.0518 (15)
H10.52090.16600.53040.062*
C20.4607 (5)0.1454 (6)0.3677 (6)0.0580 (17)
H20.54020.13630.36920.070*
C30.3425 (3)0.1421 (4)0.2661 (3)0.0172 (8)
H30.33250.13110.19530.021*
C40.2386 (4)0.1603 (4)0.2993 (4)0.0278 (10)
C50.0994 (4)0.1644 (4)0.2290 (4)0.0252 (9)
C60.0528 (4)0.1541 (4)0.1117 (4)0.0292 (10)
H60.11420.14400.08690.035*
C70.0726 (4)0.1576 (4)0.0320 (4)0.0245 (9)
C80.1001 (5)0.1527 (4)0.0932 (4)0.0329 (11)
C90.1523 (4)0.4130 (4)0.0468 (4)0.0309 (10)
H90.15500.37650.00460.037*
C100.1436 (5)0.5277 (4)0.0097 (4)0.0339 (11)
H100.14120.56860.06540.041*
C110.1385 (4)0.5796 (4)0.0885 (4)0.0328 (11)
H110.13190.65710.06590.039*
C120.1431 (4)0.5198 (4)0.2002 (4)0.0281 (10)
C130.1340 (6)0.5842 (4)0.2803 (5)0.0425 (13)
H13A0.07000.55410.35880.064*
H13B0.10970.66110.24720.064*
H13C0.21640.57870.28600.064*
C140.1546 (4)0.4016 (4)0.2325 (4)0.0239 (9)
C150.1677 (4)0.3197 (4)0.3417 (4)0.0259 (9)
C160.1711 (5)0.3449 (4)0.4377 (4)0.0346 (11)
H160.16330.41900.43520.041*
C170.1856 (5)0.2623 (5)0.5349 (4)0.0378 (12)
H170.18810.28060.59740.045*
C180.1965 (5)0.1513 (4)0.5405 (4)0.0336 (11)
H180.20560.09510.60690.040*
C190.1939 (4)0.1246 (4)0.4467 (4)0.0279 (10)
H190.20120.05010.45120.034*
C200.1806 (4)0.2066 (4)0.3455 (4)0.0231 (9)
C210.4492 (4)0.2668 (4)0.0572 (4)0.0288 (10)
H210.41200.33880.05300.035*
C220.5807 (4)0.2517 (4)0.0065 (4)0.0334 (11)
H220.63000.31340.05230.040*
C230.6388 (4)0.1474 (4)0.0031 (4)0.0309 (10)
H230.72650.13850.04830.037*
C240.5660 (4)0.0538 (4)0.0688 (4)0.0274 (10)
H240.60580.01730.07220.033*
C250.4329 (4)0.0672 (4)0.1357 (4)0.0226 (9)
C260.3713 (4)0.1768 (4)0.1274 (4)0.0239 (9)
C270.3776 (4)0.1393 (4)0.2521 (4)0.0271 (9)
C280.5152 (5)0.1895 (4)0.2198 (5)0.0406 (12)
H28A0.56790.14440.22600.061*
H28B0.54830.19240.13900.061*
H28C0.51680.26350.27400.061*
C290.3453 (4)0.0242 (4)0.2139 (4)0.0229 (9)
C300.1236 (4)0.0567 (4)0.3240 (4)0.0321 (10)
H300.03790.02840.34900.039*
C310.2778 (5)0.2102 (4)0.3241 (4)0.0301 (10)
H310.29730.28670.34790.036*
C320.1501 (5)0.1699 (4)0.3613 (5)0.0333 (11)
H320.08380.21800.41020.040*
C330.5052 (6)0.4418 (5)0.1911 (5)0.0485 (14)
H33A0.58800.41560.14270.073*
H33B0.47130.50400.14090.073*
H33C0.44670.38300.23060.073*
C340.5199 (5)0.4769 (5)0.2825 (5)0.0419 (13)
C350.6654 (6)0.4854 (6)0.3667 (6)0.0528 (15)
H35A0.61820.43640.44560.063*
H35B0.63630.56180.36580.063*
C360.8079 (6)0.4676 (6)0.3401 (7)0.0622 (18)
H36A0.82540.48270.39970.093*
H36B0.85380.51680.26220.093*
H36C0.83580.39170.34140.093*
N10.2178 (3)0.0142 (3)0.2525 (3)0.0241 (8)
N20.1569 (3)0.3522 (3)0.1535 (3)0.0227 (7)
O10.1758 (3)0.1685 (3)0.0410 (3)0.0278 (7)
O20.0296 (3)0.1773 (3)0.2775 (3)0.0271 (7)
O30.6419 (3)0.4617 (3)0.2760 (3)0.0444 (9)
O40.4318 (4)0.5138 (4)0.3568 (4)0.0575 (12)
F10.1508 (4)0.2460 (3)0.1773 (3)0.0559 (9)
F20.1846 (3)0.0694 (3)0.1195 (3)0.0480 (8)
F30.0050 (3)0.1408 (3)0.1090 (3)0.0494 (8)
S10.29934 (14)0.17557 (14)0.43745 (14)0.0497 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01775 (10)0.02274 (10)0.02497 (10)0.00244 (6)0.00687 (7)0.00852 (7)
C10.031 (3)0.065 (4)0.042 (3)0.003 (3)0.001 (2)0.014 (3)
C20.029 (3)0.081 (5)0.061 (4)0.012 (3)0.018 (3)0.014 (4)
C30.0035 (15)0.033 (2)0.0139 (18)0.0038 (15)0.0005 (14)0.0089 (17)
C40.025 (2)0.027 (2)0.029 (2)0.0033 (18)0.0080 (19)0.0073 (19)
C50.024 (2)0.018 (2)0.030 (2)0.0006 (17)0.0099 (19)0.0055 (18)
C60.029 (2)0.027 (2)0.033 (2)0.0018 (19)0.014 (2)0.009 (2)
C70.027 (2)0.019 (2)0.030 (2)0.0022 (17)0.0133 (19)0.0090 (18)
C80.029 (2)0.039 (3)0.037 (3)0.000 (2)0.015 (2)0.016 (2)
C90.032 (2)0.033 (3)0.030 (2)0.001 (2)0.014 (2)0.009 (2)
C100.032 (2)0.035 (3)0.033 (3)0.001 (2)0.015 (2)0.006 (2)
C110.025 (2)0.025 (2)0.041 (3)0.0006 (19)0.012 (2)0.004 (2)
C120.019 (2)0.026 (2)0.038 (3)0.0028 (18)0.0075 (19)0.013 (2)
C130.054 (3)0.026 (3)0.048 (3)0.001 (2)0.018 (3)0.015 (2)
C140.0167 (19)0.026 (2)0.029 (2)0.0000 (17)0.0088 (17)0.0094 (19)
C150.018 (2)0.030 (2)0.028 (2)0.0036 (18)0.0049 (17)0.0106 (19)
C160.041 (3)0.035 (3)0.029 (2)0.007 (2)0.011 (2)0.011 (2)
C170.041 (3)0.051 (3)0.027 (2)0.010 (2)0.012 (2)0.015 (2)
C180.031 (2)0.040 (3)0.027 (2)0.005 (2)0.012 (2)0.004 (2)
C190.024 (2)0.027 (2)0.031 (2)0.0030 (18)0.0099 (19)0.006 (2)
C200.0122 (18)0.030 (2)0.024 (2)0.0023 (17)0.0044 (16)0.0076 (18)
C210.026 (2)0.029 (2)0.034 (2)0.0040 (19)0.0127 (19)0.010 (2)
C220.028 (2)0.043 (3)0.028 (2)0.014 (2)0.0089 (19)0.005 (2)
C230.021 (2)0.047 (3)0.028 (2)0.001 (2)0.0089 (18)0.016 (2)
C240.024 (2)0.034 (3)0.026 (2)0.0005 (19)0.0122 (18)0.009 (2)
C250.020 (2)0.030 (2)0.023 (2)0.0020 (18)0.0094 (17)0.0124 (19)
C260.021 (2)0.032 (2)0.025 (2)0.0046 (18)0.0116 (17)0.0094 (19)
C270.032 (2)0.026 (2)0.026 (2)0.0008 (19)0.0125 (19)0.0099 (19)
C280.035 (3)0.032 (3)0.050 (3)0.005 (2)0.017 (2)0.010 (2)
C290.022 (2)0.030 (2)0.024 (2)0.0008 (18)0.0104 (17)0.0152 (19)
C300.024 (2)0.033 (3)0.039 (3)0.007 (2)0.009 (2)0.011 (2)
C310.034 (2)0.023 (2)0.033 (2)0.003 (2)0.012 (2)0.009 (2)
C320.032 (2)0.027 (2)0.040 (3)0.010 (2)0.010 (2)0.009 (2)
C330.044 (3)0.054 (4)0.046 (3)0.008 (3)0.018 (3)0.011 (3)
C340.041 (3)0.032 (3)0.046 (3)0.007 (2)0.016 (3)0.003 (2)
C350.044 (3)0.063 (4)0.059 (4)0.001 (3)0.021 (3)0.029 (3)
C360.044 (3)0.066 (4)0.083 (5)0.006 (3)0.027 (3)0.026 (4)
N10.0194 (17)0.0236 (19)0.030 (2)0.0023 (15)0.0071 (15)0.0104 (16)
N20.0173 (17)0.0216 (18)0.0271 (19)0.0003 (14)0.0068 (14)0.0077 (15)
O10.0233 (15)0.0345 (18)0.0269 (16)0.0026 (13)0.0074 (13)0.0130 (14)
O20.0217 (15)0.0330 (18)0.0286 (16)0.0008 (13)0.0104 (13)0.0113 (14)
O30.0309 (19)0.055 (2)0.047 (2)0.0013 (17)0.0129 (17)0.0194 (19)
O40.038 (2)0.072 (3)0.072 (3)0.001 (2)0.012 (2)0.045 (3)
F10.077 (2)0.058 (2)0.0277 (16)0.0214 (19)0.0157 (16)0.0037 (15)
F20.0417 (17)0.062 (2)0.056 (2)0.0156 (16)0.0233 (15)0.0395 (18)
F30.0341 (16)0.083 (3)0.0493 (18)0.0040 (16)0.0215 (14)0.0375 (18)
S10.0400 (7)0.0617 (10)0.0450 (8)0.0041 (7)0.0121 (6)0.0181 (7)
Geometric parameters (Å, º) top
Ir1—C261.982 (4)C17—H170.9300
Ir1—C201.986 (4)C18—C191.385 (7)
Ir1—N22.036 (4)C18—H180.9300
Ir1—N12.041 (4)C19—C201.397 (6)
Ir1—O12.170 (3)C19—H190.9300
Ir1—O22.171 (3)C21—C221.386 (6)
C1—C21.346 (9)C21—C261.395 (6)
C1—S11.657 (6)C21—H210.9300
C1—H10.9300C22—C231.365 (7)
C2—C31.439 (7)C22—H220.9300
C2—H20.9300C23—C241.400 (7)
C3—C41.501 (6)C23—H230.9300
C3—H30.9300C24—C251.407 (6)
C4—C51.462 (6)C24—H240.9300
C4—S11.690 (5)C25—C261.431 (6)
C5—O21.266 (5)C25—C291.477 (6)
C5—C61.424 (6)C27—C311.386 (7)
C6—C71.365 (6)C27—C291.407 (6)
C6—H60.9300C27—C281.511 (7)
C7—O11.271 (5)C28—H28A0.9600
C7—C81.532 (6)C28—H28B0.9600
C8—F21.327 (6)C28—H28C0.9600
C8—F11.332 (6)C29—N11.372 (5)
C8—F31.343 (5)C30—N11.343 (6)
C9—N21.333 (6)C30—C321.373 (7)
C9—C101.375 (7)C30—H300.9300
C9—H90.9300C31—C321.379 (7)
C10—C111.383 (7)C31—H310.9300
C10—H100.9300C32—H320.9300
C11—C121.385 (7)C33—C341.486 (8)
C11—H110.9300C33—H33A0.9600
C12—C141.421 (6)C33—H33B0.9600
C12—C131.503 (7)C33—H33C0.9600
C13—H13A0.9600C34—O41.215 (7)
C13—H13B0.9600C34—O31.336 (6)
C13—H13C0.9600C35—O31.445 (7)
C14—N21.373 (5)C35—C361.499 (8)
C14—C151.470 (6)C35—H35A0.9700
C15—C161.405 (6)C35—H35B0.9700
C15—C201.420 (6)C36—H36A0.9600
C16—C171.368 (7)C36—H36B0.9600
C16—H160.9300C36—H36C0.9600
C17—C181.388 (7)
C26—Ir1—C2091.53 (16)C18—C19—H19119.1
C26—Ir1—N295.07 (16)C20—C19—H19119.1
C20—Ir1—N280.34 (16)C19—C20—C15117.9 (4)
C26—Ir1—N180.47 (16)C19—C20—Ir1126.9 (3)
C20—Ir1—N196.68 (17)C15—C20—Ir1115.3 (3)
N2—Ir1—N1174.61 (13)C22—C21—C26121.7 (5)
C26—Ir1—O189.07 (14)C22—C21—H21119.2
C20—Ir1—O1176.21 (15)C26—C21—H21119.2
N2—Ir1—O195.88 (13)C23—C22—C21120.9 (5)
N1—Ir1—O187.11 (13)C23—C22—H22119.5
C26—Ir1—O2174.81 (14)C21—C22—H22119.5
C20—Ir1—O292.52 (14)C22—C23—C24119.8 (4)
N2—Ir1—O288.82 (13)C22—C23—H23120.1
N1—Ir1—O295.81 (13)C24—C23—H23120.1
O1—Ir1—O287.11 (11)C23—C24—C25120.2 (4)
C2—C1—S1112.8 (4)C23—C24—H24119.9
C2—C1—H1123.6C25—C24—H24119.9
S1—C1—H1123.6C24—C25—C26119.8 (4)
C1—C2—C3116.7 (5)C24—C25—C29125.5 (4)
C1—C2—H2121.6C26—C25—C29114.7 (4)
C3—C2—H2121.6C21—C26—C25117.5 (4)
C2—C3—C4104.9 (4)C21—C26—Ir1127.0 (4)
C2—C3—H3127.6C25—C26—Ir1115.0 (3)
C4—C3—H3127.6C31—C27—C29118.2 (4)
C5—C4—C3128.3 (4)C31—C27—C28118.3 (4)
C5—C4—S1119.7 (3)C29—C27—C28123.5 (4)
C3—C4—S1111.9 (3)C27—C28—H28A109.5
O2—C5—C6125.1 (4)C27—C28—H28B109.5
O2—C5—C4117.0 (4)H28A—C28—H28B109.5
C6—C5—C4117.8 (4)C27—C28—H28C109.5
C7—C6—C5126.7 (4)H28A—C28—H28C109.5
C7—C6—H6116.7H28B—C28—H28C109.5
C5—C6—H6116.7N1—C29—C27119.3 (4)
O1—C7—C6130.8 (4)N1—C29—C25112.2 (4)
O1—C7—C8111.1 (4)C27—C29—C25128.5 (4)
C6—C7—C8118.0 (4)N1—C30—C32121.8 (4)
F2—C8—F1106.6 (4)N1—C30—H30119.1
F2—C8—F3106.3 (4)C32—C30—H30119.1
F1—C8—F3106.3 (4)C32—C31—C27121.4 (5)
F2—C8—C7112.2 (4)C32—C31—H31119.3
F1—C8—C7110.6 (4)C27—C31—H31119.3
F3—C8—C7114.3 (4)C30—C32—C31118.2 (4)
N2—C9—C10122.7 (4)C30—C32—H32120.9
N2—C9—H9118.6C31—C32—H32120.9
C10—C9—H9118.6C34—C33—H33A109.5
C9—C10—C11117.3 (4)C34—C33—H33B109.5
C9—C10—H10121.4H33A—C33—H33B109.5
C11—C10—H10121.4C34—C33—H33C109.5
C10—C11—C12122.0 (5)H33A—C33—H33C109.5
C10—C11—H11119.0H33B—C33—H33C109.5
C12—C11—H11119.0O4—C34—O3122.9 (5)
C11—C12—C14118.1 (4)O4—C34—C33124.7 (5)
C11—C12—C13117.8 (4)O3—C34—C33112.4 (5)
C14—C12—C13124.1 (4)O3—C35—C36108.3 (5)
C12—C13—H13A109.5O3—C35—H35A110.0
C12—C13—H13B109.5C36—C35—H35A110.0
H13A—C13—H13B109.5O3—C35—H35B110.0
C12—C13—H13C109.5C36—C35—H35B110.0
H13A—C13—H13C109.5H35A—C35—H35B108.4
H13B—C13—H13C109.5C35—C36—H36A109.5
N2—C14—C12118.7 (4)C35—C36—H36B109.5
N2—C14—C15112.5 (4)H36A—C36—H36B109.5
C12—C14—C15128.9 (4)C35—C36—H36C109.5
C16—C15—C20119.3 (4)H36A—C36—H36C109.5
C16—C15—C14125.7 (4)H36B—C36—H36C109.5
C20—C15—C14115.0 (4)C30—N1—C29120.9 (4)
C17—C16—C15121.1 (5)C30—N1—Ir1122.0 (3)
C17—C16—H16119.5C29—N1—Ir1117.0 (3)
C15—C16—H16119.5C9—N2—C14121.2 (4)
C16—C17—C18120.2 (5)C9—N2—Ir1121.8 (3)
C16—C17—H17119.9C14—N2—Ir1116.9 (3)
C18—C17—H17119.9C7—O1—Ir1123.1 (3)
C19—C18—C17119.6 (5)C5—O2—Ir1127.0 (3)
C19—C18—H18120.2C34—O3—C35116.9 (4)
C17—C18—H18120.2C1—S1—C493.7 (3)
C18—C19—C20121.9 (5)
S1—C1—C2—C30.2 (8)O1—Ir1—C26—C2190.3 (4)
C1—C2—C3—C40.2 (7)C20—Ir1—C26—C25102.1 (3)
C2—C3—C4—C5179.7 (5)N2—Ir1—C26—C25177.5 (3)
C2—C3—C4—S10.5 (5)N1—Ir1—C26—C255.5 (3)
C3—C4—C5—O2177.8 (4)O1—Ir1—C26—C2581.7 (3)
S1—C4—C5—O21.4 (6)C31—C27—C29—N12.5 (6)
C3—C4—C5—C62.5 (7)C28—C27—C29—N1176.8 (4)
S1—C4—C5—C6178.3 (3)C31—C27—C29—C25178.7 (4)
O2—C5—C6—C70.8 (8)C28—C27—C29—C252.0 (7)
C4—C5—C6—C7178.9 (4)C24—C25—C29—N1170.4 (4)
C5—C6—C7—O11.2 (8)C26—C25—C29—N17.3 (5)
C5—C6—C7—C8175.9 (4)C24—C25—C29—C2710.8 (7)
O1—C7—C8—F258.6 (5)C26—C25—C29—C27171.5 (4)
C6—C7—C8—F2123.8 (5)C29—C27—C31—C322.1 (7)
O1—C7—C8—F160.3 (5)C28—C27—C31—C32177.2 (4)
C6—C7—C8—F1117.3 (5)N1—C30—C32—C310.5 (7)
O1—C7—C8—F3179.8 (4)C27—C31—C32—C300.6 (7)
C6—C7—C8—F32.6 (6)C32—C30—N1—C290.1 (7)
N2—C9—C10—C110.5 (7)C32—C30—N1—Ir1177.6 (4)
C9—C10—C11—C120.5 (7)C27—C29—N1—C301.4 (6)
C10—C11—C12—C140.7 (7)C25—C29—N1—C30179.6 (4)
C10—C11—C12—C13178.7 (4)C27—C29—N1—Ir1176.2 (3)
C11—C12—C14—N21.9 (6)C25—C29—N1—Ir12.8 (4)
C13—C12—C14—N2177.4 (4)C26—Ir1—N1—C30176.1 (4)
C11—C12—C14—C15176.7 (4)C20—Ir1—N1—C3085.7 (4)
C13—C12—C14—C154.0 (7)O1—Ir1—N1—C3094.3 (4)
N2—C14—C15—C16178.8 (4)O2—Ir1—N1—C307.5 (4)
C12—C14—C15—C160.1 (7)C26—Ir1—N1—C291.5 (3)
N2—C14—C15—C200.2 (5)C20—Ir1—N1—C2991.9 (3)
C12—C14—C15—C20178.5 (4)O1—Ir1—N1—C2988.1 (3)
C20—C15—C16—C170.5 (7)O2—Ir1—N1—C29174.9 (3)
C14—C15—C16—C17179.0 (4)C10—C9—N2—C140.7 (7)
C15—C16—C17—C180.4 (8)C10—C9—N2—Ir1176.6 (3)
C16—C17—C18—C190.6 (8)C12—C14—N2—C91.9 (6)
C17—C18—C19—C200.1 (7)C15—C14—N2—C9176.9 (4)
C18—C19—C20—C150.9 (6)C12—C14—N2—Ir1178.0 (3)
C18—C19—C20—Ir1178.3 (3)C15—C14—N2—Ir10.8 (4)
C16—C15—C20—C191.1 (6)C26—Ir1—N2—C986.2 (4)
C14—C15—C20—C19179.8 (4)C20—Ir1—N2—C9176.9 (4)
C16—C15—C20—Ir1178.2 (3)O1—Ir1—N2—C93.4 (3)
C14—C15—C20—Ir10.5 (5)O2—Ir1—N2—C990.4 (3)
C26—Ir1—C20—C1985.0 (4)C26—Ir1—N2—C1489.9 (3)
N2—Ir1—C20—C19179.9 (4)C20—Ir1—N2—C140.8 (3)
N1—Ir1—C20—C194.4 (4)O1—Ir1—N2—C14179.5 (3)
O2—Ir1—C20—C1991.7 (4)O2—Ir1—N2—C1493.6 (3)
C26—Ir1—C20—C1594.2 (3)C6—C7—O1—Ir11.3 (7)
N2—Ir1—C20—C150.7 (3)C8—C7—O1—Ir1178.5 (3)
N1—Ir1—C20—C15174.8 (3)C26—Ir1—O1—C7173.9 (4)
O2—Ir1—C20—C1589.1 (3)N2—Ir1—O1—C791.1 (4)
C26—C21—C22—C230.2 (7)N1—Ir1—O1—C793.4 (4)
C21—C22—C23—C242.1 (7)O2—Ir1—O1—C72.6 (3)
C22—C23—C24—C251.0 (7)C6—C5—O2—Ir12.0 (6)
C23—C24—C25—C261.9 (6)C4—C5—O2—Ir1178.3 (3)
C23—C24—C25—C29179.5 (4)C20—Ir1—O2—C5179.3 (4)
C22—C21—C26—C252.6 (6)N2—Ir1—O2—C599.0 (4)
C22—C21—C26—Ir1169.2 (3)N1—Ir1—O2—C583.7 (4)
C24—C25—C26—C213.6 (6)O1—Ir1—O2—C53.1 (4)
C29—C25—C26—C21178.5 (4)O4—C34—O3—C353.4 (8)
C24—C25—C26—Ir1169.1 (3)C33—C34—O3—C35175.5 (5)
C29—C25—C26—Ir18.7 (5)C36—C35—O3—C34177.7 (5)
C20—Ir1—C26—C2186.0 (4)C2—C1—S1—C40.5 (6)
N2—Ir1—C26—C215.6 (4)C5—C4—S1—C1179.8 (4)
N1—Ir1—C26—C21177.5 (4)C3—C4—S1—C10.5 (4)

Experimental details

Crystal data
Chemical formula[Ir(C8H4F3O2S)(C12H10N)2]·C4H8O2
Mr837.90
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.4070 (8), 12.889 (1), 12.899 (2)
α, β, γ (°)68.874 (1), 65.149 (2), 78.145 (1)
V3)1601.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)4.29
Crystal size (mm)0.49 × 0.32 × 0.19
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.211, 0.445
No. of measured, independent and
observed [I > 2σ(I)] reflections
8980, 6129, 5681
Rint0.017
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.05
No. of reflections6129
No. of parameters426
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.03, 0.98

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
Ir1—C261.982 (4)Ir1—N12.041 (4)
Ir1—C201.986 (4)Ir1—O12.170 (3)
Ir1—N22.036 (4)Ir1—O22.171 (3)
C26—Ir1—C2091.53 (16)N2—Ir1—O195.88 (13)
C26—Ir1—N295.07 (16)N1—Ir1—O187.11 (13)
C20—Ir1—N280.34 (16)C26—Ir1—O2174.81 (14)
C26—Ir1—N180.47 (16)C20—Ir1—O292.52 (14)
C20—Ir1—N196.68 (17)N2—Ir1—O288.82 (13)
N2—Ir1—N1174.61 (13)N1—Ir1—O295.81 (13)
C26—Ir1—O189.07 (14)O1—Ir1—O287.11 (11)
C20—Ir1—O1176.21 (15)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds