Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The principles of the virtual source spread (spatial broadening) phenomenon induced by angular dispersion in asymmetric X-ray Bragg reflections are illustrated, from which the virtual source properties are analyzed for typical high-resolution multiple-crystal monochromators, including inline four-bounce dispersive monochromators, back-reflection-dispersion monochromators and nondispersive nested channel-cut monochromators. It is found that dispersive monochromators can produce spread virtual sources of a few millimetres in size, which may prevent efficient microfocusing of the beam as required by inelastic X-ray scattering spectroscopy and other applications. Possible schemes to mitigate this problem are discussed. The analyses may provide important guidelines for designing and optimizing modern high-precision synchrotron X-ray optics and beamline instrumentation for spectroscopy, imaging and nanofocusing applications.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds