Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Scattering maps from strained or disordered nanostructures around a Bragg reflection can be either computed quickly using approximations and a (fast) Fourier transform or obtained using individual atomic positions. In this article, it is shown that it is possible to compute up to 4 × 1010 reflections atoms s-1 using a single graphics card, and the manner in which this speed depends on the number of atoms and points in reciprocal space is evaluated. An open-source software library (PyNX) allowing easy scattering computations (including grazing-incidence conditions) in the Python language is described, with examples of scattering from non-ideal nanostructures.

Supporting information

txt

Text file https://doi.org/10.1107/S0021889811009009/hx5119sup1.txt
Example Python script


Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds