Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A simple, physically based model that allows the whole-pattern profile fitting of diffraction data collected in parallel-beam flat-plate asymmetric reflection geometry is presented. In this arrangement, there is a fixed angle between the incident beam and the sample, resulting in a fixed-length beam footprint. The use of a wide-angle detector for the simultaneous detection of the data precludes the use of any diffracted beam optics. Therefore, the observed peak widths are a function of the length of the beam footprint on the sample. The model uses up to three refinable parameters, depending on the intensity profile of the beam, to calculate the effect of diffraction angle on the width of all diffracted peaks. The use of this model reduces the total number of parameters required to fit the observed peak widths and shapes, hence leading to increased stability in the profile analysis. Implementations of the model are provided for both fundamental parameters and empirical approaches.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds