Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A laboratory X-ray diffractometer devoted to the in situ characterization of the microstructure of epitaxic thin films at temperatures up to 1500 K has been developed. The sample holder was built using refractory materials, and a high-accuracy translation stage allows correction of the dilatation of both the sample and the sample holder. The samples are oriented with respect to the primary beam with two orthogonal rotations allowing the registration of symmetric as well as asymmetric reciprocal space maps (RSMs). The association of a monochromatic primary beam and a position-sensitive detector allows the measurement of RSMs in a few minutes for single crystals and in a few hours for imperfect epitaxic thin films. A detailed description of the setup is given and its potential is illustrated by high-temperature RSM experiments performed on yttria-doped zirconia epitaxic thin films grown on sapphire substrates.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds