Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The integration of the three-dimensional profile of each node of the reciprocal lattice without an a priori modelling of the shape of the reflections is a prerequisite in order to improve the capability of area detectors in diffraction studies. Bolotovsky et al. [J. Appl. Cryst. (1995), 28, 86-95] published a new method of area-detector peak integration based on a statistical analysis of pixel intensities and suggested its generalization for processing of high-resolution three-dimensional electronic detector data. This has been done in the present work, respecting the special requirements of data collected from neutron diffraction. The results are compared with other integration methods. It is shown that the seed-skewness method is successful in giving very reliable results and simultaneously optimizes the standard deviations. The integration procedures are applied to real data, which are refined and compared with benchmark results.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds