Download citation
Download citation
link to html
Marine green turtle (Chelonia mydas) egg-white ribonuclease (GTRNase) was crystallized from 1.1 M ammonium sulfate pH 5.5 and 30% glycerol using the sitting-drop vapour-diffusion method. The structure of GTRNase has been solved at 1.60 Å resolution by the molecular-replacement technique using a model based on the structure of RNase 5 (murine angiogenin) from Mus musculus (46% identity). The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 86.271, b = 34.174, c = 39.738 Å, α = 90, β = 102, γ = 90°. GTRNase consists of three helices and seven β-strands and displays the α+β folding topology typical of a member of the RNase A superfamily. Superposition of the Cα coordinates of GTRNase and RNase A superfamily members indicates that the overall structure is highly similar to that of angiogenin or RNase 5 from M. musculus (PDB code 2bwl) and RNase A from Bos taurus (PDB code 2blz), with root-mean-square deviations of 3.9 and 2.0 Å, respectively. The catalytic residues are conserved with respect to the RNase A superfamily. The three disulfide bridges observed in the reptilian enzymes are conserved in GTRNase, while one further disulfide bond is required for the structural stability of mammalian RNases. GTRNase is expressed in egg white and the fact that its sequence has the highest similarity to that of snapping turtle pancreatic RNase suggests that the GTRNase secreted from oviduct cells to form egg white is probably the product of the same gene as activated in pancreatic cells.

Supporting information

PDB reference: green turtle egg-white ribonuclease, 2zpo


Follow Acta Cryst. F
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds