Download citation
Download citation
link to html
Three anionic salmon trypsin isoforms (CST-1, CST-2 and CST-3) were isolated from the pyloric caeca of chum salmon (Oncorhynchus keta). The order of catalytic efficiency (Km/kcat) of the isoforms during BAPA hydrolysis was CST-2 > CST-1 > CST-3. In order to find a structural rationalization for the observed difference in catalytic efficiency, the X-ray crystallographic structures of the three isoforms were com­pared in detail. Some structural differences were observed in the C-terminal α-helix, interdomain loop and active-site region. From the results of the detailed comparison, it appears that the structural flexibility of the C-terminal α-­helix, which interacts with the N-terminal domain, and the substrate-binding pocket in CST-3 are lower than those in CST-1 and CST-2. In addition, the conformation of the catalytic triad (His57, Asp102 and Ser195) differs among the three isoforms. The imidazole N atom of His57 in CST-1 and CST-2 forms a hydrogen bond to the hydroxyl O atom of Ser195, but the distance between the imidazole N atom of His57 and the hydroxyl O atom of Ser195 in CST-3 is too great (3.8 Å) for the formation of a hydrogen bond. Thus, the nucleophilicity of the hydroxyl group of Ser195 in CST-3 is weaker than that in CST-­1 or CST-2. Furthermore, the electrostatic potential of the substrate-binding pocket in CST-2 is markedly lower than those in CST-1 and CST-3 owing to the negative charges of Asp150, Asp153 and Glu221B that arise from the long-range effect. These results may explain the higher catalytic efficiency of CST-2 compared with CST-1 and CST-3.

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds