Download citation
Download citation
link to html
Bacteriophage lambda integrase catalyzes site-specific DNA recombination. A helical bundle domain in the enzyme, called the core-binding domain (IntCB), promotes the catalysis of an intermediate DNA-cleavage reaction that is critical for recombination and is not well folded in solution in the absence of DNA. To gain structural insights into the mechanism behind the accessory role of this domain in catalysis, an attempt was made to crystallize an IntCB-DNA complex, but crystals of free IntCB were fortuitously obtained. The three-dimensional structure of DNA-free IntCB was solved at 2.0 Å resolution by molecular replacement using as the search model the previously available DNA-bound 2.8 Å structure of the IntCB domain in a larger construct of lambda integrase. The crystal structure of DNA-free IntCB resembles the DNA-bound structure of IntCB, but exhibits subtle differences in the DNA-binding face and lacks electron density for ten residues in the C-terminus that form a portion of a linker connecting IntCB to the C-terminal catalytic domain of the enzyme. Thus, this work reveals the domain in the absence of DNA and allows comparison with the DNA-bound form of this catalytically activating domain.

Supporting information

PDB reference: IntCB, 2oxo, r2oxosf


Follow Acta Cryst. F
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds