Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Two examples are presented that illustrate the capabilities of DND-CAT instrumentation for the study of the effects of processing on polymers. Firstly, a thermoplastic elastomer, Hytrel®, was stretched while 2-D data were collected simultaneously. The Hytrel® data show that the yield point of the stress-strain curve is associated with the sudden appearance of a four-point pattern. At higher deformations, strain-induced crystallization and the destruction of the hard segment domains lead to a substantial decrease of the contrast as monitored by the SAXS invariant. Prior to breakage, the extent and intensity of an equatorial streak develops as the material fibrillates. Secondly, SAXS and WAXS data were collected from quenched and annealed Poly(ethylene terephthalate) (PET) samples mounted on a DSC cell, to characterize the pre-melting shoulder in this material. Results show that substantial melting and re-crystallization occurs within the range of this shoulder in the quenched sample.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds