organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2221-o2222

1,4-Bis(4,5-di­hydro-1H-imidazol-2-yl)benzene–4-amino­benzene­sulfonic acid–water (1/2/2)

aSchool of Chemical and Material Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Road, Nanjing, Jiangsu Province 210094, People's Republic of China, and bSchool of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China
*Correspondence e-mail: liweijun947@163.com

(Received 6 August 2009; accepted 16 August 2009; online 22 August 2009)

The asymmetric unit of the title compound, C12H14N4·2C6H7NO3S·2H2O, contains one half of a centrosymmetric 1,4-bis­(4,5-dihydro-1H-imidazol-2-yl)benzene (bib) molecule, one 4-amino­benzene­sulfonic acid molecule and one water mol­ecule. In the bib molecule, the imidazole ring adopts an envelope conformation. The benzene rings of bib and 4-aminobenzenesulfonic acid are oriented at a dihedral angle of 21.89 (4)°. In the crystal structure, inter­molecular N—H⋯O, O—H⋯N and O—H⋯O inter­actions link the mol­ecules into a three-dimensional network. Weak ππ contacts between the benzene and imidazole rings and between the benzene rings [centroid–centroid distances = 3.895 (1) and 3.833 (1) Å, respectively] may further stabilize the structure.

Related literature

For general background, see: Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press, New York, NY.]); Thaimattam et al. (1998[Thaimattam, R., Reddy, D. S., Xue, F., Mak, T. C. W., Nangia, A. & Desiraju, G. R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 1783-1789.]). For related structures, see: Ren et al. (2004a[Ren, C.-X., Ye, B.-H., He, F., Cheng, L. & Chen, X.-M. (2004a). CrystEngComm, 6, 200-206.],b[Ren, C.-X., Ye, B.-H., Zhu, H.-L., Shi, J.-X. & Chen, X.-M. (2004b). Inorg. Chim. Acta, 357, 443-450.], 2007[Ren, C.-X., Cheng, L., Ye, B.-H. & Chen, X.-M. (2007). Inorg. Chim. Acta, 360, 3741-3747.], 2009[Ren, C.-X., Li, S.-Y., Yin, Z.-Z., Lu, X. & Ding, Y.-Q. (2009). Acta Cryst. E65, m572-m573.]). For imidazole bond lengths, see: Haga et al. (1996[Haga, M., Ali, M. M. & Arakawa, R. (1996). Angew. Chem. Int. Ed. Engl. 35, 76-78.]); Hammes et al. (2005[Hammes, B. S., Damiano, B. J., Tobash, P. H., Hidalog, M. J. & Yap, G. P. A. (2005). Inorg. Chem. Commun. 8, 513-516.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N4·2C6H7NO3S·2H2O

  • Mr = 596.70

  • Orthorhombic, P b c a

  • a = 13.6306 (11) Å

  • b = 12.698 (1) Å

  • c = 15.5907 (13) Å

  • V = 2698.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 273 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.975

  • 11859 measured reflections

  • 2346 independent reflections

  • 1856 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.140

  • S = 1.08

  • 2346 reflections

  • 182 parameters

  • All H-atom parameters refined

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4 0.82 2.00 2.809 (3) 168
N1—H1A⋯O2i 0.86 2.22 2.960 (3) 145
N1—H1B⋯O3ii 0.86 2.43 3.200 (3) 150
N1—H1B⋯O1ii 0.86 2.46 3.170 (4) 141
N2—H1⋯O3iii 0.86 2.07 2.897 (3) 161
O4—H4A⋯N3iv 0.85 2.08 2.760 (3) 136
O4—H4B⋯O1v 0.85 2.20 2.817 (3) 130
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (v) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL and PLATON.

Supporting information


Comment top

Attention has recently focused on the use of supramolecular interactions such as hydrogen bonding and ππ interactions, in addition to coordinate bonds, in the controlled assembly of supramolecular architectures (Jeffrey, 1997). Hydrogen bonds often play a dominant role in crystal engineering because of their combine strength with directionality (Thaimattam et al., 1998). On the other hand, supramolecular systems sustained by soft connections, such as hydrogen bonds, are comparatively more flexible and sensitive to the chemical environment. Consequently hydrogen-bond sustained systems are less designable and remain to be further investigated. We described previously a number of such metal complexes, including imidazole ligand, and have concluded that hydrogen bonding involving this group influences the geometry around the metal atom and the crystallization mechanism (Ren et al., 2004a; Ren et al., 2004b; Ren et al., 2007; Ren et al., 2009). We reported herein the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound contains one-half of 1,4-bis(4,5-di-hydro-1H-imidazol-2-yl)benzene (bib) ligand, one 4-aminobenzenesulfonic acid (SA) and one water molecules. In bib, the imidazole ring B (N2/N3/C7-C9) adopts envelope conformation with atom C8 displaced by -0.185 (3)Å from the plane of the other ring atoms. Rings A (C1-C6) and C (C10/C11/C12/C10'/C11'/C12') [symmetry code ('): 1 - x, 2 - y, 1 - z] are, of course, planar and they are oriented at a dihedral angle of 21.89 (4)°.

In the crystal structure, intramolecular O-H···O and intermolecular N-H···O, O-H···N and O-H···O interactions (Table 1) link the molecules into a three-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contacts between the benzene and imidazole rings and between the benzene rings, Cg1—Cg2 and Cg1—Cg3, [where Cg1, Cg2 and Cg3 are centroids of the rings A (C1-C6), B (N2/N3/C7-C9) and C (C10/C11/C12/C10'/C11'/C12'), respectively] may further stabilize the structure, with centroid-centroid distances of 3.895 (1) and 3.833 (1) Å, respectively.

Related literature top

For general background, see: Jeffrey (1997); Thaimattam et al. (1998). For related structures, see: Ren et al. (2004a,b, 2007, 2009). For related literature, see: Haga et al. (1996); Hammes et al. (2005).

Experimental top

For the preparation of 1,4-bis(4,5-dihydro-1H-imidazol-2-yl)benzene, (bib), 1,4-benzenedicarboxylic acid (2.31 g, 13.9 mmol), ethylenediamine (3.70 ml, 50 mmol), ethylenediamine dihydrochloride(6.64 g, 50 mmol) and toluene-p-sulfonic acid (0.208 g, 1.09 mmol) were added to the solvent of ethyleneglycol (20 ml), and the mixture was refluxed for 3 h. About half of the ethylene glycol solvent was then slowly removed by distillation. The residue was dissolved in a mixture of water (40 ml) and concentrated HCl (11 M, 3 ml). The addition of 50% aqueous NaOH gave a yellow precipitate that was purified by recrystallization. The ligand bib was obtained in 83% based on 1,4-benzenedicarboxylic acid (ca 2.50 g). Found: C 66.98; H 6.92; N 26.08%. Calc. for C12H14N4: C 67.27; H 6.59; N 26.15%. Main IR bonds (KBr, cm-1): 3188m, 2936m, 2866m, 1606 s, 1532 s, 1466 s, 1345m, 1270 s, 1191w, 1080w, 981m, 907w, 767w, 687m. For the preparation of the title compound, to a solution of bib (0.043 g, 0.2 mmol) in MeOH (15 ml), an aqueous solution (5 ml) of SA (0.068 g, 0.4 mmol) was added. The solution was allowed at room temperature in air for 3 d by slow evaporation. Large yellow prismatic crystals were obtained, which were collected by filtration, washed with water and dried in vacuum desiccator over silica gel (0.047 g, 54%). Main IR bonds (KBr,cm-1): 3424m, 3354m, 3249w, 1655w, 1603m, 1507m, 1119m, 1024 s, 1001m, 698m, 569w.

Refinement top

H atoms were positioned geometrically, with N-H = O.86 Å (for NH and NH2), O-H = 0.82 Å (for OH) and 0.85 Å (for H2O) and C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x = 1.5 for OH H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line [symmetry code ('): 1 - x, 2 - y, 1 - z].
[Figure 2] Fig. 2. A partial packing diagram for the title compound. Hydrogen bonds are shown as dashed lines.
1,4-Bis(4,5-dihydro-1H-imidazol-2-yl)benzene–4-aminobenzenesulfonic acid–water (1/2/2) top
Crystal data top
C12H14N4·2C6H7NO3S·2H2OF(000) = 1256
Mr = 596.70Dx = 1.469 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3721 reflections
a = 13.6306 (11) Åθ = 2.6–26.3°
b = 12.698 (1) ŵ = 0.26 mm1
c = 15.5907 (13) ÅT = 273 K
V = 2698.5 (4) Å3Block, yellow
Z = 40.15 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2346 independent reflections
Radiation source: fine-focus sealed tube1856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 25.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1615
Tmin = 0.962, Tmax = 0.975k = 1515
11859 measured reflectionsl = 1814
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045All H-atom parameters refined
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0724P)2 + 1.4974P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2346 reflectionsΔρmax = 0.45 e Å3
182 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0010 (5)
Crystal data top
C12H14N4·2C6H7NO3S·2H2OV = 2698.5 (4) Å3
Mr = 596.70Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 13.6306 (11) ŵ = 0.26 mm1
b = 12.698 (1) ÅT = 273 K
c = 15.5907 (13) Å0.15 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2346 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1856 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.975Rint = 0.036
11859 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.140All H-atom parameters refined
S = 1.08Δρmax = 0.45 e Å3
2346 reflectionsΔρmin = 0.42 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20619 (5)0.82812 (5)0.31074 (4)0.0423 (3)
O10.29197 (15)0.8625 (2)0.26382 (13)0.0688 (7)
O20.1875 (2)0.71668 (16)0.30647 (13)0.0681 (7)
O30.12151 (14)0.88982 (15)0.28322 (11)0.0536 (5)
H3A0.07290.87140.31040.080*
O40.06007 (17)0.8498 (2)0.36193 (13)0.0774 (8)
H4A0.06460.80280.40060.093*
H4B0.11050.88460.34700.093*
N10.2770 (2)0.9242 (2)0.67696 (14)0.0615 (8)
H1A0.27750.87400.71400.074*
H1B0.28840.98780.69300.074*
N20.51620 (17)0.7721 (2)0.34661 (15)0.0518 (6)
H10.53680.81800.31030.062*
N30.46812 (18)0.70826 (19)0.46926 (16)0.0530 (6)
C10.25816 (19)0.90302 (19)0.59303 (15)0.0384 (6)
C20.2594 (2)0.98296 (19)0.53090 (16)0.0398 (6)
H20.27051.05220.54760.048*
C30.24456 (19)0.96036 (18)0.44548 (15)0.0368 (6)
H30.24701.01410.40500.044*
C40.22603 (17)0.85807 (18)0.41959 (15)0.0327 (5)
C50.22330 (18)0.77832 (18)0.48013 (15)0.0362 (6)
H50.21050.70950.46310.043*
C60.2394 (2)0.80063 (19)0.56551 (15)0.0392 (6)
H60.23780.74630.60550.047*
C70.49343 (18)0.7937 (2)0.42682 (17)0.0441 (7)
C80.4824 (3)0.6141 (3)0.4154 (2)0.0657 (9)
H8A0.42410.57030.41490.079*
H8B0.53770.57260.43510.079*
C90.5021 (3)0.6610 (3)0.3270 (2)0.0604 (8)
H9A0.56040.63070.30130.073*
H9B0.44680.65060.28890.073*
C100.49700 (19)0.8996 (2)0.46426 (16)0.0446 (7)
C110.5064 (2)0.9132 (2)0.55335 (17)0.0513 (7)
H110.51050.85460.58900.062*
C120.4905 (2)0.9878 (2)0.41216 (17)0.0514 (7)
H120.48390.97960.35320.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0514 (5)0.0491 (4)0.0264 (4)0.0001 (3)0.0007 (3)0.0023 (3)
O10.0604 (14)0.1066 (17)0.0396 (12)0.0006 (13)0.0178 (10)0.0025 (11)
O20.114 (2)0.0497 (12)0.0407 (12)0.0013 (12)0.0076 (11)0.0109 (9)
O30.0497 (12)0.0712 (13)0.0399 (10)0.0024 (10)0.0102 (9)0.0053 (9)
O40.0590 (14)0.128 (2)0.0449 (13)0.0017 (14)0.0103 (10)0.0270 (13)
N10.097 (2)0.0549 (15)0.0321 (12)0.0210 (14)0.0048 (12)0.0035 (10)
N20.0504 (14)0.0678 (16)0.0371 (13)0.0018 (12)0.0070 (11)0.0087 (11)
N30.0438 (14)0.0646 (15)0.0507 (14)0.0019 (12)0.0108 (11)0.0103 (12)
C10.0396 (14)0.0445 (13)0.0312 (13)0.0052 (12)0.0007 (11)0.0021 (10)
C20.0468 (16)0.0335 (12)0.0390 (14)0.0056 (11)0.0020 (11)0.0019 (10)
C30.0389 (14)0.0360 (12)0.0356 (13)0.0004 (11)0.0006 (11)0.0053 (10)
C40.0317 (13)0.0359 (12)0.0304 (12)0.0021 (10)0.0005 (10)0.0013 (9)
C50.0457 (15)0.0315 (12)0.0314 (13)0.0014 (11)0.0010 (10)0.0005 (9)
C60.0466 (15)0.0374 (12)0.0335 (13)0.0011 (12)0.0016 (12)0.0068 (10)
C70.0290 (14)0.0668 (17)0.0366 (14)0.0049 (13)0.0043 (11)0.0116 (12)
C80.063 (2)0.071 (2)0.063 (2)0.0182 (17)0.0129 (16)0.0054 (16)
C90.058 (2)0.072 (2)0.0507 (18)0.0093 (16)0.0045 (15)0.0012 (15)
C100.0330 (14)0.0646 (17)0.0361 (14)0.0076 (13)0.0063 (11)0.0110 (12)
C110.0509 (17)0.0654 (18)0.0377 (15)0.0104 (14)0.0065 (12)0.0146 (13)
C120.0494 (17)0.0729 (19)0.0318 (14)0.0101 (15)0.0042 (12)0.0094 (13)
Geometric parameters (Å, º) top
S1—O21.439 (2)C3—C41.383 (3)
S1—O11.447 (2)C3—H30.9300
S1—O31.460 (2)C4—C51.385 (3)
S1—C41.760 (2)C5—C61.379 (3)
O3—H3A0.8200C5—H50.9300
O4—H4A0.8501C6—H60.9300
O4—H4B0.8501C7—C101.467 (4)
N1—C11.360 (3)C8—C91.525 (4)
N1—H1A0.8600C8—H8A0.9700
N1—H1B0.8600C8—H8B0.9700
N2—C71.317 (3)C9—H9A0.9700
N2—C91.455 (4)C9—H9B0.9700
N2—H10.8600C10—C121.387 (4)
N3—C71.317 (3)C10—C111.405 (4)
N3—C81.474 (4)C11—C12i1.368 (4)
C1—C61.393 (3)C11—H110.9300
C1—C21.403 (3)C12—C11i1.368 (4)
C2—C31.377 (3)C12—H120.9300
C2—H20.9300
O2—S1—O1114.61 (15)C4—C5—H5119.9
O2—S1—O3111.99 (14)C5—C6—C1121.2 (2)
O1—S1—O3109.17 (13)C5—C6—H6119.4
O2—S1—C4106.51 (12)C1—C6—H6119.4
O1—S1—C4107.34 (13)N3—C7—N2111.6 (3)
O3—S1—C4106.79 (11)N3—C7—C10124.3 (2)
S1—O3—H3A109.5N2—C7—C10124.1 (2)
H4A—O4—H4B120.0N3—C8—C9102.8 (3)
C1—N1—H1A120.0N3—C8—H8A111.2
C1—N1—H1B120.0C9—C8—H8A111.2
H1A—N1—H1B120.0N3—C8—H8B111.2
C7—N2—C9111.7 (2)C9—C8—H8B111.2
C7—N2—H1124.2H8A—C8—H8B109.1
C9—N2—H1124.2N2—C9—C8102.3 (2)
C7—N3—C8110.3 (2)N2—C9—H9A111.3
N1—C1—C6121.0 (2)C8—C9—H9A111.3
N1—C1—C2121.2 (2)N2—C9—H9B111.3
C6—C1—C2117.7 (2)C8—C9—H9B111.3
C3—C2—C1121.0 (2)H9A—C9—H9B109.2
C3—C2—H2119.5C12—C10—C11119.0 (3)
C1—C2—H2119.5C12—C10—C7120.4 (2)
C2—C3—C4120.3 (2)C11—C10—C7120.6 (2)
C2—C3—H3119.8C12i—C11—C10120.3 (3)
C4—C3—H3119.8C12i—C11—H11119.9
C3—C4—C5119.5 (2)C10—C11—H11119.9
C3—C4—S1120.81 (18)C11i—C12—C10120.7 (3)
C5—C4—S1119.67 (18)C11i—C12—H12119.7
C6—C5—C4120.2 (2)C10—C12—H12119.7
C6—C5—H5119.9
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O40.822.002.809 (3)168
N1—H1A···O2ii0.862.222.960 (3)145
N1—H1B···O3iii0.862.433.200 (3)150
N1—H1B···O1iii0.862.463.170 (4)141
N2—H1···O3iv0.862.072.897 (3)161
O4—H4A···N3v0.852.082.760 (3)136
O4—H4B···O1vi0.852.202.817 (3)130
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x+1/2, y+2, z+1/2; (iv) x+1/2, y, z+1/2; (v) x1/2, y+3/2, z+1; (vi) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H14N4·2C6H7NO3S·2H2O
Mr596.70
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)273
a, b, c (Å)13.6306 (11), 12.698 (1), 15.5907 (13)
V3)2698.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.962, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
11859, 2346, 1856
Rint0.036
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.140, 1.08
No. of reflections2346
No. of parameters182
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.45, 0.42

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O40.822.002.809 (3)167.8
N1—H1A···O2i0.862.222.960 (3)144.9
N1—H1B···O3ii0.862.433.200 (3)149.5
N1—H1B···O1ii0.862.463.170 (4)141.0
N2—H1···O3iii0.862.072.897 (3)160.8
O4—H4A···N3iv0.852.082.760 (3)136.3
O4—H4B···O1v0.852.202.817 (3)129.6
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1/2, y+2, z+1/2; (iii) x+1/2, y, z+1/2; (iv) x1/2, y+3/2, z+1; (v) x1/2, y, z+1/2.
 

Acknowledgements

This work was generously supported by the National Natural Science Foundation of China (grant No. 20701016).

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaga, M., Ali, M. M. & Arakawa, R. (1996). Angew. Chem. Int. Ed. Engl. 35, 76–78.  CrossRef CAS Web of Science Google Scholar
First citationHammes, B. S., Damiano, B. J., Tobash, P. H., Hidalog, M. J. & Yap, G. P. A. (2005). Inorg. Chem. Commun. 8, 513–516.  Web of Science CrossRef CAS Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press, New York, NY.  Google Scholar
First citationRen, C.-X., Cheng, L., Ye, B.-H. & Chen, X.-M. (2007). Inorg. Chim. Acta, 360, 3741–3747.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, C.-X., Li, S.-Y., Yin, Z.-Z., Lu, X. & Ding, Y.-Q. (2009). Acta Cryst. E65, m572–m573.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRen, C.-X., Ye, B.-H., He, F., Cheng, L. & Chen, X.-M. (2004a). CrystEngComm, 6, 200–206.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, C.-X., Ye, B.-H., Zhu, H.-L., Shi, J.-X. & Chen, X.-M. (2004b). Inorg. Chim. Acta, 357, 443–450.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThaimattam, R., Reddy, D. S., Xue, F., Mak, T. C. W., Nangia, A. & Desiraju, G. R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 1783–1789.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2221-o2222
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds