organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(1H-Indol-3-yl)-4-phenyl-2,2′-bi­pyridine-5-carbo­nitrile

aXuzhou College of Industrial Technology, Xuzhou 221140, People's Republic of China, bXuzhou Pharmaceutical College, Xuzhou 221116, People's Republic of China, and cXuzhou Medical College, Xuzhou 221002, People's Republic of China
*Correspondence e-mail: songleizhu@126.com

(Received 29 April 2009; accepted 29 April 2009; online 7 May 2009)

In the mol­ecule of the title compound, C25H16N4, the pyridine rings are oriented at a dihedral angle of 0.92 (3)°, while the dihedral angle between the benzene ring and the adjacent pyridine ring is 56.51 (3)°. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into centrosymmetric dimers, forming R22(16) ring motifs. ππ contacts between the pyridine ring and the indole ring system and between the pyridine rings [centroid–centroid distances = 3.923 (2) and 3.724 (2) Å] may further stabilize the structure. Two weak C—H⋯π inter­actions are also present.

Related literature

For general background, see: da Silva et al. (2001[Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273-324.]); Joshi & Chand (1982[Joshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1-12.]); Namba et al. (2005[Namba, K., Cui, S., Wang, J. & Kishi, Y. (2005). Org. Lett. 7, 5417-5419.]). For a related structure, see: Zhu et al., (2008[Zhu, S. L., Ji, S. J., Zhao, K. & Liu, Y. (2008). Tetrahedron Lett. 49, 2578-2582.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring-motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C25H16N4

  • Mr = 372.42

  • Triclinic, [P \overline 1]

  • a = 9.7744 (16) Å

  • b = 9.7927 (11) Å

  • c = 11.233 (2) Å

  • α = 73.121 (13)°

  • β = 86.008 (16)°

  • γ = 63.853 (10)°

  • V = 921.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 291 K

  • 0.55 × 0.35 × 0.30 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (ABSCOR; Jacobson, 1998[Jacobson, R. (1998). ABSCOR. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.966, Tmax = 0.976

  • 8987 measured reflections

  • 3349 independent reflections

  • 2614 reflections with I > 2/s(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.126

  • S = 1.12

  • 3349 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N3i 0.86 2.23 3.066 (2) 164
C12—H12⋯Cg5ii 0.93 2.84 3.649 (3) 146
C23—H23⋯Cg4iii 0.93 2.91 3.711 (3) 145
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+2, -z+1; (iii) x, y, z-1. Cg4 and Cg5 are the centroids of the C11–C16 and C20–C25 rings, respectively.

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Indole nucleus is a well known heterocycle (da Silva et al., 2001). Compounds carrying the indole moiety exhibit antibacterial and fungicidal activities (Joshi & Chand, 1982). Moreover, the bipyridines and the related complexes have also found numerous applications in asymmetric catalysis, photoinduced electron transfer, and polymer and dendrimer science (Namba et al., 2005). As a part of our programme devoted to the preparation of functionalized indole derivatives, we synthesized a series of indole substituted heterocycles (Zhu et al., 2008). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The indole ring system A (N4/C18-C25) is planar with a maximum deviation of -0.021 (3) Å for atom C25. Rings B (N1/C1-C5), C (N2/C6-C10) and D (C11-C16) are, of course, planar, and they are oriented at dihedral angles of A/B = 23.01 (3), A/C = 23.61 (3), A/D = 74.90 (3), B/C = 0.92 (3), B/D = 56.51 (3) and C/D = 56.51 (3) °. So, rings B and C are nearly coplanar.

In the crystal structure, intermolecular N-H···N hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers forming R22(16) ring motifs (Fig. 2) (Bernstein et al., 1995), in which they may be effective in the stabilization of the structure. The ππ contacts between the pyridine ring and the indole ring system and the pyridine rings, Cg1—Cg2i and Cg2—Cg3ii [symmetry codes: (i) -x, 2 - y, 1 - z, (ii) -x, 1 - y, 1 - z, where Cg1, Cg2 and Cg3 are centroids of the rings (N4/C18-C20/C25), B (N1/C1-C5) and C (N2/C6-C10), respectively] may further stabilize the structure, with centroid-centroid distances of 3.923 (2) and 3.724 (2) Å. There also exist two weak C—H···π interactions (Table 1).

Related literature top

For general background, see: da Silva et al. (2001); Joshi & Chand (1982); Namba et al. (2005). For a related structure, see: Zhu et al., (2008). For bond-length data, see: Allen et al. (1987). For ring-motifs, see: Bernstein et al. (1995). Cg4 and Cg5 are the centroids of the C11–C16 and C20–C25 rings, respectively.

Experimental top

The title compound was prepared by one-pot reaction of 3-cyanoacetyl indole (2 mmol), benzaldehyde (2 mmol) and 2-acetyl pyridine (2 mmol) in present of ammonium acetate in ethanol. After refluxing for 5 h, the reaction mixture was cooled and washed with small amount of cool ethanol. The crude product was filtered and single crystals of the title compound were obtained from ethanol solution by slow evaporation at room temperature (yield; 80%, m.p. 567-568 K). Spectroscopic analysis: IR (KBr, n, cm-1): 3337, 3050, 2218, 1573, 1535, 1438, 1214, 1145, 850, 745, 703. 1H NMR (400 MHz, DMSO-d6): 11.89 (br s, 1H, NH), 8.78 (d, J = 4.4 Hz, 1H, ArH), 8.58 (d, J = 8.0 Hz, 1H, ArH), 8.41 (d, J = 5.2 Hz, 2H, ArH), 8.31 (s, 1H, ArH), 8.11 (m, 1H, ArH), 7.79-7.81 (m, 2H, ArH), 7.56-7.66 (m, 5H, ArH), 7.24-7.29 (m, 2H, ArH)

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
6-(1H-Indol-3-yl)-4-phenyl-2,2'-bipyridine-5-carbonitrile top
Crystal data top
C25H16N4Z = 2
Mr = 372.42F(000) = 388
Triclinic, P1Dx = 1.342 Mg m3
Hall symbol: -P 1Melting point = 567–568 K
a = 9.7744 (16) ÅMo Kα radiation, λ = 0.71070 Å
b = 9.7927 (11) ÅCell parameters from 3008 reflections
c = 11.233 (2) Åθ = 3.1–25.3°
α = 73.121 (13)°µ = 0.08 mm1
β = 86.008 (16)°T = 291 K
γ = 63.853 (10)°Block, yellow
V = 921.5 (3) Å30.55 × 0.35 × 0.30 mm
Data collection top
Rigaku Mercury
diffractometer
3349 independent reflections
Radiation source: fine-focus sealed tube2614 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.027
Detector resolution: 7.31 pixels mm-1θmax = 25.3°, θmin = 3.1°
ω scansh = 1111
Absorption correction: multi-scan
(ABSCOR; Jacobson, 1998)
k = 1011
Tmin = 0.966, Tmax = 0.976l = 1313
8987 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.1499P]
where P = (Fo2 + 2Fc2)/3
3349 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C25H16N4γ = 63.853 (10)°
Mr = 372.42V = 921.5 (3) Å3
Triclinic, P1Z = 2
a = 9.7744 (16) ÅMo Kα radiation
b = 9.7927 (11) ŵ = 0.08 mm1
c = 11.233 (2) ÅT = 291 K
α = 73.121 (13)°0.55 × 0.35 × 0.30 mm
β = 86.008 (16)°
Data collection top
Rigaku Mercury
diffractometer
3349 independent reflections
Absorption correction: multi-scan
(ABSCOR; Jacobson, 1998)
2614 reflections with I > 2/s(I)
Tmin = 0.966, Tmax = 0.976Rint = 0.027
8987 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.12Δρmax = 0.16 e Å3
3349 reflectionsΔρmin = 0.21 e Å3
263 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.94201 (16)0.20772 (17)0.54741 (13)0.0355 (4)
N21.20413 (18)0.3774 (2)0.44026 (14)0.0455 (4)
N30.5855 (2)0.1895 (2)0.28547 (16)0.0606 (5)
N40.64100 (17)0.04598 (18)0.69177 (14)0.0422 (4)
H40.59360.10430.70250.051*
C11.01436 (19)0.2799 (2)0.46717 (16)0.0347 (4)
C20.98275 (19)0.3310 (2)0.33960 (16)0.0371 (4)
H21.03820.37760.28730.045*
C30.86846 (19)0.3126 (2)0.28960 (16)0.0353 (4)
C40.79281 (19)0.2362 (2)0.37308 (16)0.0348 (4)
C50.83308 (19)0.1829 (2)0.50305 (16)0.0334 (4)
C61.13427 (19)0.3032 (2)0.52184 (16)0.0354 (4)
C71.1727 (2)0.2494 (2)0.64913 (18)0.0449 (5)
H71.12260.19810.70390.054*
C81.2862 (2)0.2731 (3)0.6929 (2)0.0519 (5)
H81.31350.23830.77790.062*
C91.3586 (2)0.3482 (2)0.6104 (2)0.0494 (5)
H91.43610.36480.63780.059*
C101.3136 (2)0.3981 (3)0.4861 (2)0.0521 (5)
H101.36250.44970.43020.063*
C110.8284 (2)0.3777 (2)0.15322 (16)0.0379 (4)
C120.9407 (2)0.3356 (2)0.07066 (17)0.0445 (5)
H121.04000.26170.10100.053*
C130.9065 (3)0.4026 (3)0.05660 (18)0.0529 (6)
H130.98230.37250.11140.063*
C140.7602 (3)0.5140 (3)0.10229 (19)0.0555 (6)
H140.73760.55990.18780.067*
C150.6484 (3)0.5570 (3)0.02151 (19)0.0532 (6)
H150.54980.63230.05250.064*
C160.6809 (2)0.4891 (2)0.10587 (18)0.0460 (5)
H160.60390.51810.16000.055*
C170.6772 (2)0.2108 (2)0.32443 (17)0.0423 (5)
C180.7603 (2)0.1025 (2)0.59690 (16)0.0352 (4)
C190.6856 (2)0.0176 (2)0.58127 (17)0.0385 (4)
H190.66820.00560.50540.046*
C200.6833 (2)0.0028 (2)0.78422 (17)0.0380 (4)
C210.6582 (2)0.0376 (2)0.90989 (18)0.0476 (5)
H210.60810.10010.94440.057*
C220.7105 (3)0.0240 (3)0.98141 (19)0.0568 (6)
H220.69570.00291.06630.068*
C230.7851 (3)0.1175 (3)0.92946 (19)0.0601 (6)
H230.81880.15810.98030.072*
C240.8104 (2)0.1515 (3)0.80452 (18)0.0507 (5)
H240.86050.21430.77110.061*
C250.7595 (2)0.0901 (2)0.72879 (16)0.0366 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0353 (8)0.0367 (9)0.0374 (8)0.0191 (7)0.0027 (7)0.0097 (7)
N20.0430 (9)0.0583 (11)0.0475 (9)0.0321 (8)0.0058 (8)0.0173 (8)
N30.0675 (12)0.0748 (13)0.0507 (10)0.0502 (11)0.0130 (9)0.0006 (9)
N40.0439 (9)0.0449 (9)0.0476 (9)0.0298 (8)0.0052 (7)0.0109 (7)
C10.0320 (9)0.0349 (10)0.0378 (10)0.0153 (8)0.0024 (8)0.0102 (8)
C20.0336 (9)0.0415 (11)0.0369 (10)0.0206 (8)0.0024 (8)0.0058 (8)
C30.0354 (10)0.0346 (10)0.0355 (10)0.0159 (8)0.0005 (8)0.0081 (8)
C40.0346 (9)0.0346 (10)0.0362 (10)0.0172 (8)0.0001 (8)0.0082 (8)
C50.0329 (9)0.0314 (9)0.0385 (10)0.0157 (8)0.0034 (8)0.0114 (8)
C60.0319 (9)0.0355 (10)0.0407 (10)0.0152 (8)0.0036 (8)0.0134 (8)
C70.0452 (11)0.0490 (12)0.0415 (11)0.0237 (10)0.0025 (9)0.0083 (9)
C80.0514 (12)0.0575 (13)0.0492 (12)0.0256 (11)0.0101 (10)0.0131 (10)
C90.0334 (10)0.0567 (13)0.0663 (14)0.0199 (10)0.0016 (10)0.0281 (11)
C100.0458 (12)0.0661 (14)0.0611 (13)0.0364 (11)0.0121 (10)0.0249 (11)
C110.0418 (10)0.0419 (11)0.0360 (10)0.0255 (9)0.0003 (8)0.0080 (8)
C120.0459 (11)0.0509 (12)0.0399 (11)0.0266 (10)0.0016 (9)0.0089 (9)
C130.0668 (14)0.0664 (15)0.0398 (11)0.0420 (13)0.0114 (10)0.0171 (10)
C140.0770 (16)0.0650 (15)0.0357 (11)0.0472 (13)0.0048 (11)0.0026 (10)
C150.0566 (13)0.0545 (13)0.0463 (12)0.0306 (11)0.0118 (11)0.0018 (10)
C160.0448 (11)0.0539 (12)0.0410 (10)0.0260 (10)0.0005 (9)0.0085 (9)
C170.0457 (11)0.0469 (12)0.0382 (10)0.0283 (10)0.0001 (9)0.0042 (9)
C180.0334 (9)0.0345 (10)0.0388 (10)0.0164 (8)0.0030 (8)0.0098 (8)
C190.0408 (10)0.0398 (11)0.0387 (10)0.0215 (9)0.0030 (8)0.0109 (8)
C200.0339 (10)0.0373 (10)0.0436 (11)0.0174 (8)0.0041 (8)0.0105 (8)
C210.0476 (12)0.0545 (13)0.0449 (11)0.0305 (10)0.0111 (9)0.0091 (10)
C220.0709 (15)0.0729 (15)0.0377 (11)0.0436 (13)0.0129 (10)0.0146 (11)
C230.0815 (16)0.0805 (16)0.0432 (12)0.0570 (14)0.0122 (11)0.0205 (11)
C240.0656 (14)0.0626 (13)0.0424 (11)0.0457 (12)0.0096 (10)0.0145 (10)
C250.0356 (10)0.0374 (10)0.0394 (10)0.0199 (8)0.0033 (8)0.0091 (8)
Geometric parameters (Å, º) top
N1—C11.339 (2)C11—C121.385 (3)
N1—C51.347 (2)C11—C161.391 (3)
N2—C101.334 (2)C12—C131.384 (3)
N2—C61.341 (2)C12—H120.9300
N3—C171.144 (2)C13—C141.378 (3)
N4—C191.354 (2)C13—H130.9300
N4—C201.377 (2)C14—C151.369 (3)
N4—H40.8600C14—H140.9300
C1—C21.381 (2)C15—C161.384 (3)
C1—C61.490 (2)C15—H150.9300
C2—C31.385 (2)C16—H160.9300
C2—H20.9300C18—C191.375 (2)
C3—C41.404 (2)C18—C251.451 (2)
C3—C111.484 (2)C19—H190.9300
C4—C51.420 (2)C20—C211.384 (3)
C4—C171.432 (2)C20—C251.405 (2)
C5—C181.465 (2)C21—C221.372 (3)
C6—C71.388 (2)C21—H210.9300
C7—C81.377 (3)C22—C231.389 (3)
C7—H70.9300C22—H220.9300
C8—C91.368 (3)C23—C241.376 (3)
C8—H80.9300C23—H230.9300
C9—C101.371 (3)C24—C251.398 (3)
C9—H90.9300C24—H240.9300
C10—H100.9300
C1—N1—C5119.18 (15)C13—C12—H12119.7
C10—N2—C6117.30 (17)C11—C12—H12119.7
C19—N4—C20109.41 (15)C14—C13—C12120.1 (2)
C19—N4—H4125.3C14—C13—H13119.9
C20—N4—H4125.3C12—C13—H13119.9
N1—C1—C2123.09 (15)C15—C14—C13119.85 (19)
N1—C1—C6116.67 (15)C15—C14—H14120.1
C2—C1—C6120.24 (16)C13—C14—H14120.1
C1—C2—C3119.94 (16)C14—C15—C16120.5 (2)
C1—C2—H2120.0C14—C15—H15119.8
C3—C2—H2120.0C16—C15—H15119.8
C2—C3—C4117.25 (16)C15—C16—C11120.2 (2)
C2—C3—C11119.47 (16)C15—C16—H16119.9
C4—C3—C11123.25 (15)C11—C16—H16119.9
C3—C4—C5120.12 (15)N3—C17—C4179.5 (2)
C3—C4—C17118.82 (15)C19—C18—C25105.64 (15)
C5—C4—C17121.05 (16)C19—C18—C5128.12 (16)
N1—C5—C4120.37 (15)C25—C18—C5126.18 (15)
N1—C5—C18115.71 (15)N4—C19—C18110.50 (16)
C4—C5—C18123.91 (15)N4—C19—H19124.7
N2—C6—C7122.15 (16)C18—C19—H19124.7
N2—C6—C1115.83 (15)N4—C20—C21129.29 (17)
C7—C6—C1122.01 (16)N4—C20—C25107.56 (15)
C8—C7—C6118.82 (18)C21—C20—C25123.15 (17)
C8—C7—H7120.6C22—C21—C20117.15 (18)
C6—C7—H7120.6C22—C21—H21121.4
C9—C8—C7119.50 (19)C20—C21—H21121.4
C9—C8—H8120.2C21—C22—C23121.23 (19)
C7—C8—H8120.2C21—C22—H22119.4
C8—C9—C10118.03 (18)C23—C22—H22119.4
C8—C9—H9121.0C24—C23—C22121.5 (2)
C10—C9—H9121.0C24—C23—H23119.2
N2—C10—C9124.20 (19)C22—C23—H23119.2
N2—C10—H10117.9C23—C24—C25118.88 (18)
C9—C10—H10117.9C23—C24—H24120.6
C12—C11—C16118.78 (17)C25—C24—H24120.6
C12—C11—C3119.99 (16)C24—C25—C20118.06 (17)
C16—C11—C3121.11 (17)C24—C25—C18135.01 (17)
C13—C12—C11120.51 (19)C20—C25—C18106.88 (15)
C5—N1—C1—C20.0 (3)C16—C11—C12—C130.3 (3)
C5—N1—C1—C6179.68 (15)C3—C11—C12—C13176.21 (17)
N1—C1—C2—C32.0 (3)C11—C12—C13—C141.0 (3)
C6—C1—C2—C3178.34 (16)C12—C13—C14—C150.7 (3)
C1—C2—C3—C42.2 (3)C13—C14—C15—C160.1 (3)
C1—C2—C3—C11175.87 (17)C14—C15—C16—C110.8 (3)
C2—C3—C4—C50.7 (3)C12—C11—C16—C150.5 (3)
C11—C3—C4—C5177.30 (16)C3—C11—C16—C15175.28 (17)
C2—C3—C4—C17178.14 (16)N1—C5—C18—C19157.15 (17)
C11—C3—C4—C173.8 (3)C4—C5—C18—C1924.1 (3)
C1—N1—C5—C41.6 (2)N1—C5—C18—C2519.5 (3)
C1—N1—C5—C18179.67 (15)C4—C5—C18—C25159.21 (17)
C3—C4—C5—N11.2 (3)C20—N4—C19—C180.8 (2)
C17—C4—C5—N1179.95 (17)C25—C18—C19—N40.5 (2)
C3—C4—C5—C18179.84 (16)C5—C18—C19—N4176.68 (17)
C17—C4—C5—C181.3 (3)C19—N4—C20—C21178.41 (19)
C10—N2—C6—C70.0 (3)C19—N4—C20—C250.8 (2)
C10—N2—C6—C1179.08 (16)N4—C20—C21—C22178.64 (19)
N1—C1—C6—N2179.21 (15)C25—C20—C21—C220.5 (3)
C2—C1—C6—N21.1 (3)C20—C21—C22—C230.1 (3)
N1—C1—C6—C71.7 (3)C21—C22—C23—C240.3 (4)
C2—C1—C6—C7178.01 (17)C22—C23—C24—C250.0 (4)
N2—C6—C7—C80.0 (3)C23—C24—C25—C200.6 (3)
C1—C6—C7—C8179.07 (17)C23—C24—C25—C18177.8 (2)
C6—C7—C8—C90.3 (3)N4—C20—C25—C24178.46 (16)
C7—C8—C9—C100.4 (3)C21—C20—C25—C240.8 (3)
C6—N2—C10—C90.2 (3)N4—C20—C25—C180.5 (2)
C8—C9—C10—N20.4 (3)C21—C20—C25—C18178.79 (17)
C2—C3—C11—C1254.4 (2)C19—C18—C25—C24177.5 (2)
C4—C3—C11—C12127.63 (19)C5—C18—C25—C245.3 (3)
C2—C3—C11—C16121.39 (19)C19—C18—C25—C200.0 (2)
C4—C3—C11—C1656.6 (3)C5—C18—C25—C20177.27 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N3i0.862.233.066 (2)164
C12—H12···Cg5ii0.932.843.649 (3)146
C23—H23···Cg4iii0.932.913.711 (3)145
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+2, z+1; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC25H16N4
Mr372.42
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.7744 (16), 9.7927 (11), 11.233 (2)
α, β, γ (°)73.121 (13), 86.008 (16), 63.853 (10)
V3)921.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.55 × 0.35 × 0.30
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Jacobson, 1998)
Tmin, Tmax0.966, 0.976
No. of measured, independent and
observed [I > 2/s(I)] reflections
8987, 3349, 2614
Rint0.027
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.126, 1.12
No. of reflections3349
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.21

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N3i0.862.233.066 (2)164
C12—H12···Cg5ii0.932.843.649 (3)146
C23—H23···Cg4iii0.932.913.711 (3)145
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+2, z+1; (iii) x, y, z1.
 

Acknowledgements

This work was sponsored by the `Qing Lan' Project of Jiangsu Province for Excellent Young Teachers of XuZhou College of Industrial Technology, and the Special Foundation of the President of Xuzhou Medical College.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). ABSCOR. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationJoshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1–12.  CAS PubMed Web of Science Google Scholar
First citationNamba, K., Cui, S., Wang, J. & Kishi, Y. (2005). Org. Lett. 7, 5417–5419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, S. L., Ji, S. J., Zhao, K. & Liu, Y. (2008). Tetrahedron Lett. 49, 2578–2582.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds