organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Bromoprop­oxy)-4-chloro­benzene

aCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: chemywg@126.com

(Received 10 November 2008; accepted 14 November 2008; online 22 November 2008)

In the mol­ecule of the title compound, C8H8BrClO, the Cl atom lies slightly out of the aromatic ring plane [displacement = 0.072 (3) Å]. In the crystal structure, a ππ contact between the phenyl rings [centroid–centroid distance = 3.699 (3) Å] may stabilize the structure. There also exists a C—H⋯π contact between the methyl­ene group and the chloro­phenyl ring.

Related literature

For general background, see: Zirngibl et al. (1988[Zirngibl, L., Fischer, J., Jahn, U. & Thiele, K. (1988). Ann. N. Y. Acad. Sci. 54, 63-73.]). For related structures, see: Menini & Gusevskaya (2006[Menini, L. & Gusevskaya, E. V. (2006). Appl. Catal. A Gen. 309, 122-128.]); Baggaley & Watts (1982[Baggaley, K. H. & Watts, E. A. (1982). European Patent Application EP0049060.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8BrClO

  • Mr = 235.50

  • Monoclinic, P 21 /c

  • a = 9.0680 (18) Å

  • b = 9.781 (2) Å

  • c = 10.238 (2) Å

  • β = 98.01 (3)°

  • V = 899.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.81 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf-Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.327, Tmax = 0.382

  • 1726 measured reflections

  • 1620 independent reflections

  • 769 reflections with I > 2σ(I)

  • Rint = 0.060

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.166

  • S = 1.00

  • 1620 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2ACg1i 0.97 2.88 3.665 (3) 138
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg1 is the centroid of the C3–C8 ring.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Omoconazole has a high antifungal activity and a broad spectrum (Zirngibl et al., 1988). As part of our ongoing studies in this area, we report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1) the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C3-C8) is, of course, planar, and the Cl atom lies slightly out of the ring plane [0.072 (3) Å]. The (O1/C1/C2) and (Br/C1/C2) moieties are oriented with respect to ring A at dihedral angles of 11.57 (3)° and 74.97 (3)°, respectively.

In the crystal structure, the π-π contact between the phenyl rings, Cg1—Cg1i [symmetry code: (i) -x, 1 - y, -z, where Cg1 is centroid of the ring A (C3-C8)] may stabilize the structure, with centroid-centroid distance of 3.699 (3) Å. There also exists a C—H···π contact (Table 1) between the methylene group and the chlorophenyl ring.

Related literature top

For general background, see: Zirngibl et al. (1988). For related structures, see: Menini & Gusevskaya (2006); Baggaley & Watts (1982). For bond-length data, see: Allen et al. (1987).

Experimental top

Phenol (47.0 g, 0.5 mol), CuCl2 (147.4 g, 1.1 mol) and hydrochloric acid (350 ml, 8.5 mol/L) were mixed in a three-necked flask equipped with a reflux condenser and a magnetic stirrer. The solution was stirred at 383 K for 10 h, and then cooled to room temperature. Subsequently the reaction mixture was extracted with toluene for three times, and then the extracts were dried and the solvents were completely stripped by evaporation. After isolated by column chromatography (silica), p-chlorophenol was obtained (yield; 44.8 g, 75%) (Menini & Gusevskaya, 2006). p-Chlorophenol (26.0 g, 0.2 mol) was dissolved with stirring in water (30 ml) containing sodium hydroxide (9.0 g, 0.23 mol) and added dropwise to excess refluxing ethylene dibromide (74.8 g, 0.4 mol). The reaction mixture was heated under reflux for 6 h, cooled and extracted into ether (3 x 150 ml). The combined organic extracts were washed with water, dried over Na2S04, filtered and evaporated to dryness to yield an oil. Fractionation under reduced pressure yielded p-chlorophenoxyethyl bromide as a colorless oil, then cooled to give the title compound as colorless solid (yield; 27.6 g, 57%) (Baggaley & Watts, 1982). Crystals suitable for X-ray analysis were obtained by slow evaporation of an petroleum ether solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
1-(3-Bromopropoxy)-4-chlorobenzene top
Crystal data top
C8H8BrClOF(000) = 464
Mr = 235.50Dx = 1.740 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.0680 (18) Åθ = 10–14°
b = 9.781 (2) ŵ = 4.81 mm1
c = 10.238 (2) ÅT = 294 K
β = 98.01 (3)°Block, colorless
V = 899.2 (3) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
769 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 25.3°, θmin = 2.3°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.327, Tmax = 0.382l = 1212
1726 measured reflections3 standard reflections every 120 min
1620 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.050P)2 + 3.3P]
where P = (Fo2 + 2Fc2)/3
1620 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C8H8BrClOV = 899.2 (3) Å3
Mr = 235.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0680 (18) ŵ = 4.81 mm1
b = 9.781 (2) ÅT = 294 K
c = 10.238 (2) Å0.30 × 0.20 × 0.20 mm
β = 98.01 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
769 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.060
Tmin = 0.327, Tmax = 0.3823 standard reflections every 120 min
1726 measured reflections intensity decay: 1%
1620 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.00Δρmax = 0.48 e Å3
1620 reflectionsΔρmin = 0.51 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.57689 (14)0.36443 (12)0.40395 (11)0.0876 (5)
Cl0.1214 (3)0.4586 (3)0.3126 (3)0.0960 (10)
O0.3720 (7)0.3636 (6)0.1096 (6)0.0663 (18)
C10.5206 (10)0.2276 (10)0.2666 (9)0.064 (2)
H1A0.52470.13790.30730.077*
H1B0.59330.22920.20560.077*
C20.3720 (10)0.2470 (10)0.1918 (9)0.064 (2)
H2A0.29950.25890.25220.077*
H2B0.34430.16670.13830.077*
C30.2602 (12)0.3856 (11)0.0161 (11)0.071 (3)
C40.1241 (11)0.3031 (10)0.0054 (9)0.066 (2)
H4A0.11440.23250.06440.079*
C50.0111 (12)0.3336 (11)0.0948 (10)0.074 (3)
H5A0.07650.28320.10030.089*
C60.0200 (10)0.4318 (10)0.1849 (8)0.061 (2)
C70.1567 (11)0.5088 (10)0.1676 (10)0.070 (3)
H7A0.16880.57800.22760.084*
C80.2624 (10)0.4863 (10)0.0733 (9)0.062 (2)
H8A0.34550.54300.06610.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.1226 (10)0.0711 (7)0.0759 (7)0.0158 (7)0.0374 (6)0.0003 (7)
Cl0.088 (2)0.101 (2)0.099 (2)0.0010 (18)0.0109 (17)0.0052 (19)
O0.092 (5)0.052 (4)0.067 (4)0.006 (4)0.052 (4)0.013 (4)
C10.069 (5)0.058 (5)0.070 (5)0.001 (5)0.022 (4)0.005 (5)
C20.072 (5)0.051 (5)0.074 (5)0.001 (4)0.023 (4)0.011 (5)
C30.068 (5)0.074 (6)0.077 (5)0.002 (5)0.032 (5)0.004 (5)
C40.085 (6)0.050 (5)0.069 (5)0.003 (4)0.031 (4)0.001 (4)
C50.075 (5)0.074 (6)0.079 (5)0.010 (5)0.032 (4)0.010 (5)
C60.066 (5)0.062 (5)0.055 (4)0.001 (4)0.008 (4)0.019 (4)
C70.078 (6)0.059 (5)0.075 (5)0.001 (4)0.021 (4)0.000 (5)
C80.062 (5)0.055 (5)0.073 (5)0.008 (4)0.021 (4)0.005 (4)
Geometric parameters (Å, º) top
Br—C11.957 (9)C3—C41.466 (13)
Cl—C61.719 (10)C4—C51.378 (13)
O—C31.311 (11)C4—H4A0.9300
O—C21.418 (10)C5—C61.342 (13)
C1—C21.466 (12)C5—H5A0.9300
C1—H1A0.9700C6—C71.440 (13)
C1—H1B0.9700C7—C81.281 (12)
C2—H2A0.9700C7—H7A0.9300
C2—H2B0.9700C8—H8A0.9300
C3—C81.347 (13)
C3—O—C2120.1 (8)C5—C4—C3117.9 (10)
C2—C1—Br114.6 (6)C5—C4—H4A121.1
C2—C1—H1A108.6C3—C4—H4A121.1
Br—C1—H1A108.6C6—C5—C4123.8 (10)
C2—C1—H1B108.6C6—C5—H5A118.1
Br—C1—H1B108.6C4—C5—H5A118.1
H1A—C1—H1B107.6C5—C6—C7115.1 (9)
O—C2—C1109.8 (8)C5—C6—Cl121.4 (8)
O—C2—H2A109.7C7—C6—Cl123.5 (8)
C1—C2—H2A109.7C8—C7—C6122.9 (10)
O—C2—H2B109.7C8—C7—H7A118.6
C1—C2—H2B109.7C6—C7—H7A118.6
H2A—C2—H2B108.2C7—C8—C3123.9 (10)
O—C3—C8122.2 (9)C7—C8—H8A118.0
O—C3—C4121.4 (10)C3—C8—H8A118.0
C8—C3—C4116.3 (10)
C3—O—C2—C1167.0 (8)C4—C5—C6—C72.1 (14)
Br—C1—C2—O70.5 (8)C4—C5—C6—Cl176.5 (7)
C2—O—C3—C8172.7 (8)C5—C6—C7—C80.2 (14)
C2—O—C3—C48.7 (13)Cl—C6—C7—C8178.8 (8)
O—C3—C4—C5179.4 (9)C6—C7—C8—C32.9 (15)
C8—C3—C4—C50.7 (13)O—C3—C8—C7178.4 (9)
C3—C4—C5—C61.8 (14)C4—C3—C8—C73.0 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cg1i0.972.883.665 (3)138
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC8H8BrClO
Mr235.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)9.0680 (18), 9.781 (2), 10.238 (2)
β (°) 98.01 (3)
V3)899.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.81
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.327, 0.382
No. of measured, independent and
observed [I > 2σ(I)] reflections
1726, 1620, 769
Rint0.060
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.166, 1.00
No. of reflections1620
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.51

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cg1i0.972.8833.665 (3)138
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

This research was financially supported by the Department of Science and Technology of Jiangsu Province (grant No. BE200830457) and the `863' project (grant No. 2007 A A02Z211) of the Ministry of Science and Technology of the People's Republic of China.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBaggaley, K. H. & Watts, E. A. (1982). European Patent Application EP0049060.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMenini, L. & Gusevskaya, E. V. (2006). Appl. Catal. A Gen. 309, 122–128.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZirngibl, L., Fischer, J., Jahn, U. & Thiele, K. (1988). Ann. N. Y. Acad. Sci. 54, 63–73.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds