organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4,5-Di­aza­fluoren-9-yl­­idene)aniline

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wjt@njut.edu.cn

(Received 29 May 2008; accepted 31 May 2008; online 7 June 2008)

In the mol­ecule of the title compound, C17H11N3, the 4,5-diaza­fluorenyl­idene unit is nearly planar and is oriented with respect to the phenyl ring at a dihedral angle of 75.75 (3)°. In the crystal structure, the mol­ecules are aligned in the [100] direction in such a way that neighbouring 4,5-diaza­fluorenyl­idene planes face each other in an anti­parallel fashion.

Related literature

For related literature, see: Wang & Rillema (1997[Wang, Y. X. & Rillema, D. P. (1997). Tetrahedron, 37, 12377-12390.]); Wang et al. (2006[Wang, C.-X., Wang, P. & Li, Z.-F. (2006). Z. Kristallogr. New Cryst. Struct. 221, 211-212.]); Peters et al. (1998[Peters, K., Peters, E.-M. & Quast, H. (1998). Z. Kristallogr. New Cryst. Struct. 213, 607-608.]); Glagovich et al. (2004a[Glagovich, N., Reed, E., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004a). Acta Cryst. E60, o623-o625.],b[Glagovich, N. M., Reed, E. M., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004b). Acta Cryst. E60, o1269-o1270.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11N3

  • Mr = 257.29

  • Triclinic, [P \overline 1]

  • a = 7.1950 (14) Å

  • b = 8.5860 (17) Å

  • c = 11.876 (2) Å

  • α = 80.63 (3)°

  • β = 74.78 (3)°

  • γ = 66.46 (3)°

  • V = 647.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.984, Tmax = 0.996

  • 2529 measured reflections

  • 2326 independent reflections

  • 1642 reflections with I > 2σ(I)

  • Rint = 0.057

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.178

  • S = 1.02

  • 2326 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-(4,5-diazafluorenylidene)benzenamine, is one of the important ligands, being utilized to synthesize complexes with interesting photochemical properties (Wang & Rillema, 1997). The crystal structure of 4-methyl-N-(4,5-diazafluorenylidene)benzenamine monohydrate, (II) (Wang et al., 2006) was reported, previously. We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges, which are comparable with the corresponding values in other fluorenylidene compounds (II), N-fluorenylidene-aniline-benzene (4/1), (III) (Peters et al., 1998), N-(9H-fluoren-9-ylidene)-N-(4-methoxyphenyl)amine, (IV) (Glagovich et al., 2004a) and N-9H-fluoren-9-ylidene-3,4-dimethyl-aniline, (V) (Glagovich et al., 2004b). Rings A (C1–C6), B (N2/C8–C12), C (C7/C8/C12/C13/C17) and D (N3/C13–C17) are, of course, planar. In the 4,5-diazafluorenylidene unit, the dihedral angles between the rings are B/C = 0.29 (3)°, C/D = 2.30 (3)° and B/D = 2.15 (3)°. So, rings B, C and D are nearly coplanar. The coplanar ring system is oriented with respect to ring A at a dihedral angle of 75.75 (3)°, in which it is reported as 65.1 (1)° in (II).

In the crystal structure, the molecules are aligned in the [100] direction, in such a way that neighbouring 4,5-diazafluorenylidene planes face in anti-parallel fashion (Fig. 2), as in (II).

Related literature top

For related literature, see: Wang & Rillema (1997); Wang et al. (2006); Peters et al. (1998); Glagovich et al. (2004a,b). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I), was prepared according to the literature method (Wang & Rillema, 1997). Crystals suitable for X-ray analysis were obtained by dissolving (I) (2.0 g, 6.3 mmol) in acetate ester solution (50 ml, 1.0 mol/L) and evaporating the solvent slowly at room temperature for about 5 d.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I).
N-(4,5-diazafluoren-9-ylidene)aniline top
Crystal data top
C17H11N3Z = 2
Mr = 257.29F(000) = 268
Triclinic, P1Dx = 1.319 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1950 (14) ÅCell parameters from 25 reflections
b = 8.5860 (17) Åθ = 9–13°
c = 11.876 (2) ŵ = 0.08 mm1
α = 80.63 (3)°T = 298 K
β = 74.78 (3)°Needle, colourless
γ = 66.46 (3)°0.20 × 0.10 × 0.05 mm
V = 647.6 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1642 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 25.2°, θmin = 1.8°
ω/2θ scansh = 88
Absorption correction: ψ scan
(North et al., 1968)
k = 910
Tmin = 0.984, Tmax = 0.996l = 014
2529 measured reflections3 standard reflections every 120 min
2326 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.08P)2 + 0.4P]
where P = (Fo2 + 2Fc2)/3
2326 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H11N3γ = 66.46 (3)°
Mr = 257.29V = 647.6 (2) Å3
Triclinic, P1Z = 2
a = 7.1950 (14) ÅMo Kα radiation
b = 8.5860 (17) ŵ = 0.08 mm1
c = 11.876 (2) ÅT = 298 K
α = 80.63 (3)°0.20 × 0.10 × 0.05 mm
β = 74.78 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1642 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.057
Tmin = 0.984, Tmax = 0.9963 standard reflections every 120 min
2529 measured reflections intensity decay: none
2326 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
2326 reflectionsΔρmin = 0.25 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1000 (4)1.2848 (3)0.6315 (2)0.0491 (6)
N20.3187 (4)0.7234 (3)0.4917 (2)0.0492 (6)
N30.3994 (4)0.9717 (3)0.2888 (2)0.0503 (6)
C10.0047 (6)1.2899 (6)0.9516 (3)0.0808 (12)
H1B0.07171.29351.00780.097*
C20.1937 (6)1.2891 (5)0.9852 (3)0.0778 (11)
H2B0.26051.29211.06380.093*
C30.2916 (6)1.2841 (5)0.9021 (3)0.0675 (9)
H3B0.42571.28450.92490.081*
C40.1951 (5)1.2783 (4)0.7855 (3)0.0561 (8)
H4A0.26371.27530.73010.067*
C50.0048 (5)1.2772 (3)0.7513 (2)0.0470 (7)
C60.1040 (5)1.2853 (4)0.8350 (3)0.0616 (9)
H6A0.23691.28770.81240.074*
C70.1686 (4)1.1567 (3)0.5708 (2)0.0401 (6)
C80.1856 (4)0.9756 (3)0.6012 (2)0.0385 (6)
C90.1347 (4)0.8860 (4)0.7046 (2)0.0454 (7)
H9A0.07390.93840.77500.055*
C100.1782 (5)0.7148 (4)0.6987 (3)0.0501 (7)
H10A0.14700.64980.76620.060*
C110.2673 (5)0.6404 (4)0.5935 (3)0.0530 (8)
H11A0.29360.52530.59290.064*
C120.2774 (4)0.8874 (3)0.4993 (2)0.0409 (6)
C130.3186 (4)1.0075 (3)0.4004 (2)0.0405 (6)
C140.4125 (5)1.1058 (4)0.2161 (3)0.0574 (8)
H14A0.46741.08780.13710.069*
C150.3502 (5)1.2689 (4)0.2504 (3)0.0538 (8)
H15A0.36311.35620.19510.065*
C160.2688 (4)1.3018 (4)0.3668 (3)0.0502 (7)
H16A0.22651.40990.39240.060*
C170.2534 (4)1.1661 (3)0.4432 (2)0.0398 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0548 (14)0.0417 (13)0.0454 (14)0.0158 (11)0.0029 (11)0.0071 (11)
N20.0500 (14)0.0445 (14)0.0527 (15)0.0180 (11)0.0079 (11)0.0066 (11)
N30.0466 (14)0.0543 (15)0.0451 (14)0.0190 (11)0.0006 (11)0.0072 (11)
C10.079 (3)0.109 (3)0.048 (2)0.027 (2)0.0153 (19)0.010 (2)
C20.080 (3)0.102 (3)0.046 (2)0.032 (2)0.0057 (18)0.0088 (19)
C30.065 (2)0.072 (2)0.059 (2)0.0299 (18)0.0026 (17)0.0032 (17)
C40.064 (2)0.0534 (18)0.0501 (18)0.0241 (15)0.0077 (15)0.0049 (14)
C50.0553 (17)0.0351 (15)0.0422 (16)0.0116 (12)0.0043 (13)0.0044 (12)
C60.0573 (19)0.065 (2)0.0533 (19)0.0150 (16)0.0067 (15)0.0076 (15)
C70.0352 (13)0.0419 (15)0.0407 (15)0.0114 (11)0.0091 (11)0.0023 (12)
C80.0351 (13)0.0410 (14)0.0432 (15)0.0152 (11)0.0133 (11)0.0029 (11)
C90.0472 (16)0.0462 (16)0.0405 (15)0.0140 (13)0.0111 (12)0.0034 (12)
C100.0534 (17)0.0437 (16)0.0510 (18)0.0192 (13)0.0116 (14)0.0056 (13)
C110.0542 (18)0.0402 (16)0.061 (2)0.0160 (13)0.0102 (15)0.0026 (14)
C120.0334 (13)0.0409 (15)0.0465 (16)0.0125 (11)0.0073 (12)0.0038 (12)
C130.0311 (13)0.0457 (16)0.0429 (16)0.0142 (11)0.0040 (11)0.0054 (12)
C140.0544 (18)0.067 (2)0.0446 (17)0.0258 (16)0.0040 (14)0.0045 (15)
C150.0518 (17)0.0566 (19)0.0495 (18)0.0250 (14)0.0032 (14)0.0057 (14)
C160.0450 (16)0.0456 (17)0.0511 (18)0.0124 (13)0.0039 (13)0.0020 (13)
C170.0350 (13)0.0431 (15)0.0411 (15)0.0152 (11)0.0073 (11)0.0021 (11)
Geometric parameters (Å, º) top
N1—C71.269 (3)C7—C171.480 (4)
N1—C51.410 (3)C7—C81.500 (4)
N2—C121.331 (3)C8—C91.384 (4)
N2—C111.343 (4)C8—C121.398 (4)
N3—C131.333 (3)C9—C101.385 (4)
N3—C141.341 (4)C9—H9A0.9300
C1—C21.380 (5)C10—C111.375 (4)
C1—C61.381 (5)C10—H10A0.9300
C1—H1B0.9300C11—H11A0.9300
C2—C31.369 (5)C12—C131.482 (4)
C2—H2B0.9300C13—C171.386 (4)
C3—C41.375 (4)C14—C151.385 (4)
C3—H3B0.9300C14—H14A0.9300
C4—C51.385 (4)C15—C161.380 (4)
C4—H4A0.9300C15—H15A0.9300
C5—C61.392 (4)C16—C171.379 (4)
C6—H6A0.9300C16—H16A0.9300
C7—N1—C5121.5 (2)C8—C9—C10117.0 (3)
C12—N2—C11114.6 (2)C8—C9—H9A121.5
C13—N3—C14114.1 (3)C10—C9—H9A121.5
C2—C1—C6120.2 (4)C11—C10—C9120.4 (3)
C2—C1—H1B119.9C11—C10—H10A119.8
C6—C1—H1B119.9C9—C10—H10A119.8
C3—C2—C1119.6 (3)N2—C11—C10124.1 (3)
C3—C2—H2B120.2N2—C11—H11A117.9
C1—C2—H2B120.2C10—C11—H11A117.9
C2—C3—C4121.2 (3)N2—C12—C8125.8 (3)
C2—C3—H3B119.4N2—C12—C13125.6 (2)
C4—C3—H3B119.4C8—C12—C13108.6 (2)
C3—C4—C5119.6 (3)N3—C13—C17125.4 (3)
C3—C4—H4A120.2N3—C13—C12126.3 (2)
C5—C4—H4A120.2C17—C13—C12108.3 (2)
C4—C5—C6119.6 (3)N3—C14—C15124.7 (3)
C4—C5—N1120.3 (3)N3—C14—H14A117.6
C6—C5—N1119.8 (3)C15—C14—H14A117.6
C1—C6—C5119.9 (3)C16—C15—C14119.8 (3)
C1—C6—H6A120.1C16—C15—H15A120.1
C5—C6—H6A120.1C14—C15—H15A120.1
N1—C7—C17122.3 (2)C17—C16—C15116.6 (3)
N1—C7—C8132.7 (2)C17—C16—H16A121.7
C17—C7—C8105.0 (2)C15—C16—H16A121.7
C9—C8—C12118.0 (2)C16—C17—C13119.3 (3)
C9—C8—C7133.7 (2)C16—C17—C7130.9 (3)
C12—C8—C7108.3 (2)C13—C17—C7109.7 (2)
C6—C1—C2—C30.1 (6)C9—C8—C12—N20.9 (4)
C1—C2—C3—C40.5 (6)C7—C8—C12—N2179.7 (2)
C2—C3—C4—C50.2 (5)C9—C8—C12—C13179.9 (2)
C3—C4—C5—C61.3 (5)C7—C8—C12—C131.1 (3)
C3—C4—C5—N1175.0 (3)C14—N3—C13—C170.7 (4)
C7—N1—C5—C475.0 (4)C14—N3—C13—C12177.4 (3)
C7—N1—C5—C6111.3 (3)N2—C12—C13—N31.2 (4)
C2—C1—C6—C51.0 (6)C8—C12—C13—N3177.9 (2)
C4—C5—C6—C11.7 (5)N2—C12—C13—C17179.7 (2)
N1—C5—C6—C1175.5 (3)C8—C12—C13—C170.5 (3)
C5—N1—C7—C17174.9 (2)C13—N3—C14—C150.2 (4)
C5—N1—C7—C84.7 (5)N3—C14—C15—C160.4 (5)
N1—C7—C8—C90.6 (5)C14—C15—C16—C170.4 (4)
C17—C7—C8—C9179.8 (3)C15—C16—C17—C130.0 (4)
N1—C7—C8—C12179.1 (3)C15—C16—C17—C7177.7 (3)
C17—C7—C8—C121.2 (3)N3—C13—C17—C160.7 (4)
C12—C8—C9—C100.3 (4)C12—C13—C17—C16177.8 (2)
C7—C8—C9—C10178.7 (3)N3—C13—C17—C7178.8 (2)
C8—C9—C10—C110.3 (4)C12—C13—C17—C70.3 (3)
C12—N2—C11—C100.3 (4)N1—C7—C17—C162.9 (4)
C9—C10—C11—N20.3 (5)C8—C7—C17—C16176.9 (3)
C11—N2—C12—C80.9 (4)N1—C7—C17—C13179.3 (2)
C11—N2—C12—C13180.0 (2)C8—C7—C17—C131.0 (3)

Experimental details

Crystal data
Chemical formulaC17H11N3
Mr257.29
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.1950 (14), 8.5860 (17), 11.876 (2)
α, β, γ (°)80.63 (3), 74.78 (3), 66.46 (3)
V3)647.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.984, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
2529, 2326, 1642
Rint0.057
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.178, 1.02
No. of reflections2326
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.25

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGlagovich, N., Reed, E., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004a). Acta Cryst. E60, o623–o625.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlagovich, N. M., Reed, E. M., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004b). Acta Cryst. E60, o1269–o1270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPeters, K., Peters, E.-M. & Quast, H. (1998). Z. Kristallogr. New Cryst. Struct. 213, 607–608.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. X. & Rillema, D. P. (1997). Tetrahedron, 37, 12377–12390.  CrossRef Web of Science Google Scholar
First citationWang, C.-X., Wang, P. & Li, Z.-F. (2006). Z. Kristallogr. New Cryst. Struct. 221, 211–212.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds