organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-5-(4-Fluoro­benzyl­­idene)-1,3-thia­zolidine-2,4-dione

aDepartment of Applied Chemistry, College of Sciences, Nanjing University of Technolgy, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 30 November 2007; accepted 24 December 2007; online 25 January 2008)

In the title compound, C10H6FNO2S, the benzene and thia­zolidine rings make a dihedral angle of 7.52 (3)°. Intra­molecular C—H⋯O and C—H⋯S hydrogen bonds result in the formation of nearly planar five- and six-membered rings; the adjacent rings are nearly coplanar. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For general background, see: Barreca et al. (2002[Barreca, M. L., Balzarini, J., Chimirri, A., De Clercq, E., De Luca, L., Holtje, H. D., Holtje, M., Monforte, A. M., Monforte, P., Pannecouque, C., Rao, A. & Zappala, M. (2002). J. Med. Chem. 45, 5410-5413.]); Botti et al. (1996[Botti, P., Pallin, T. D. & Tam, J. P. (1996). J. Am. Chem. Soc. 118, 10018-10024.]). For a related structure, see: Guo et al. (2006[Guo, C., Zhang, D.-M., Tang, Q.-G. & Sun, H.-S. (2006). Acta Cryst. E62, o3994-o3995.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6FNO2S

  • Mr = 223.22

  • Orthorhombic, F d d 2

  • a = 26.519 (5) Å

  • b = 36.509 (7) Å

  • c = 3.8490 (8) Å

  • V = 3726.6 (13) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 294 (2) K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.905, Tmax = 0.967

  • 2087 measured reflections

  • 1059 independent reflections

  • 790 reflections with I > 2σ(I)

  • Rint = 0.042

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.121

  • S = 1.04

  • 1059 reflections

  • 136 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.66 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), no Friedel pairs

  • Flack parameter: 0.0 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O2i 0.86 1.98 2.830 (5) 171
C5—H5A⋯S 0.93 2.54 3.241 (5) 133
C7—H7A⋯O2 0.93 2.50 2.870 (5) 104
Symmetry code: (i) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Siemens, 1996[Siemens (1996). SHELXTL. Version 5.0). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiazolidines are an important class of heteroaromatic compounds and have widespread applications from pharmaceuticals (Barreca et al., 2002) to materials (Botti et al., 1996). As part of our ongoing studies in this area (Guo et al., 2006), we report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), bond lengths and angles are within normal ranges (Allen et al., 1987). The intramolecular C—H···O and C—H···S hydrogen bonds (Table 1) result in the formations of nearly planar five- and six-membered rings; C (S/H5A/C4/C5/C7/C8) and D (O2/H7A/C7—C9). Rings A (C1—C6) and B (N/S/C8—C10) are, of course, planar and the dihedral angles between them are A/B = 7.52 (3)°, A/C = 4.73 (3)°, A/D = 6.90 (3)°, B/C = 3.63 (2)°, B/D = 2.39 (3)° and C/D = 4.56 (2)°. So, the adjacent rings are also nearly co-planar.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Barreca et al. (2002); Botti et al. (1996). For a related structure, see: Guo et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, thiazolidine-2,4-dione (10 mmol) and 4-fluorobenzaldehyde (10 mmol) were dissolved in ethanol (10 ml) in a round-bottomed flask (50 ml) and 5 drops of piperidine were added. The flask was heated in a modified domestic microwave oven at 300 W for 5 min. After cooling, the mixture was poured into water and the crude compound (I) filtered out. Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
(Z)-5-(4-Fluorobenzylidene)-1,3-thiazolidine-2,4-dione top
Crystal data top
C10H6FNO2SF(000) = 1824
Mr = 223.22Dx = 1.591 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 25 reflections
a = 26.519 (5) Åθ = 9–13°
b = 36.509 (7) ŵ = 0.34 mm1
c = 3.8490 (8) ÅT = 294 K
V = 3726.6 (13) Å3Block, colorles
Z = 160.30 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
790 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
ω/2θ scansh = 032
Absorption correction: ψ scan
(North et al., 1968)
k = 044
Tmin = 0.905, Tmax = 0.967l = 40
2087 measured reflections3 standard reflections every 120 min
1059 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.05P)2 + 3P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1059 reflectionsΔρmax = 0.38 e Å3
136 parametersΔρmin = 0.66 e Å3
1 restraintAbsolute structure: Flack (1983), no Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (2)
Crystal data top
C10H6FNO2SV = 3726.6 (13) Å3
Mr = 223.22Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 26.519 (5) ŵ = 0.34 mm1
b = 36.509 (7) ÅT = 294 K
c = 3.8490 (8) Å0.30 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
790 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.042
Tmin = 0.905, Tmax = 0.9673 standard reflections every 120 min
2087 measured reflections intensity decay: none
1059 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.121Δρmax = 0.38 e Å3
S = 1.04Δρmin = 0.66 e Å3
1059 reflectionsAbsolute structure: Flack (1983), no Friedel pairs
136 parametersAbsolute structure parameter: 0.0 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.08943 (4)0.00189 (3)0.0089 (5)0.0379 (3)
F0.06109 (11)0.13395 (8)0.6207 (12)0.0681 (12)
O10.13745 (13)0.05739 (9)0.3062 (14)0.0619 (12)
O20.21942 (10)0.03754 (8)0.2142 (14)0.0493 (10)
N0.18501 (14)0.01228 (9)0.0627 (14)0.0425 (11)
H0A0.21360.02190.11500.051*
C10.01787 (17)0.11646 (12)0.5430 (15)0.0416 (12)
C20.02675 (18)0.13443 (12)0.5921 (16)0.0484 (15)
H2A0.02730.15840.67440.058*
C30.07078 (19)0.11621 (11)0.5166 (17)0.0444 (13)
H3A0.10150.12780.55590.053*
C40.07035 (16)0.08082 (10)0.3826 (13)0.0346 (11)
C50.02378 (16)0.06382 (12)0.3314 (15)0.0400 (12)
H5A0.02250.04020.24210.048*
C60.02016 (15)0.08195 (12)0.4125 (16)0.0452 (14)
H6A0.05120.07070.37820.054*
C70.11827 (16)0.06366 (11)0.3095 (14)0.0352 (10)
H7A0.14620.07720.37820.042*
C80.12929 (15)0.03151 (11)0.1597 (14)0.0317 (10)
C90.18224 (17)0.02026 (11)0.1107 (15)0.0370 (12)
C100.14053 (17)0.02927 (12)0.1510 (17)0.0450 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0303 (5)0.0391 (5)0.0444 (6)0.0005 (4)0.0015 (7)0.0028 (6)
F0.0400 (16)0.0705 (18)0.094 (3)0.0212 (14)0.003 (2)0.024 (2)
O10.058 (2)0.0465 (17)0.081 (3)0.0105 (16)0.000 (3)0.026 (2)
O20.0267 (16)0.0444 (16)0.077 (3)0.0002 (12)0.0039 (19)0.001 (2)
N0.0295 (18)0.0403 (18)0.058 (3)0.0068 (15)0.001 (2)0.001 (2)
C10.033 (2)0.051 (2)0.041 (3)0.012 (2)0.003 (2)0.009 (3)
C20.047 (3)0.042 (2)0.056 (4)0.012 (2)0.009 (3)0.018 (3)
C30.047 (3)0.036 (2)0.050 (3)0.0028 (19)0.002 (3)0.007 (3)
C40.031 (2)0.036 (2)0.036 (3)0.0030 (17)0.002 (2)0.002 (2)
C50.035 (2)0.038 (2)0.047 (3)0.0012 (17)0.001 (2)0.006 (2)
C60.0209 (18)0.056 (3)0.058 (4)0.0019 (18)0.007 (2)0.018 (3)
C70.030 (2)0.042 (2)0.033 (3)0.0057 (17)0.000 (2)0.008 (2)
C80.024 (2)0.040 (2)0.031 (3)0.0007 (16)0.003 (2)0.009 (2)
C90.032 (2)0.037 (2)0.042 (3)0.0039 (18)0.001 (2)0.011 (2)
C100.038 (2)0.042 (2)0.055 (4)0.0065 (19)0.002 (3)0.002 (3)
Geometric parameters (Å, º) top
S—C81.739 (4)C2—H2A0.9300
S—C101.770 (5)C3—C41.391 (6)
F—C11.346 (5)C3—H3A0.9300
O1—C101.191 (6)C4—C51.396 (6)
O2—C91.237 (5)C4—C71.445 (6)
N—C91.364 (6)C5—C61.376 (6)
N—C101.375 (6)C5—H5A0.9300
N—H0A0.8600C6—H6A0.9300
C1—C61.358 (6)C7—C81.340 (6)
C1—C21.366 (7)C7—H7A0.9300
C2—C31.375 (6)C8—C91.475 (6)
C8—S—C1092.6 (2)C6—C5—H5A119.9
C9—N—C10117.9 (4)C4—C5—H5A119.9
C9—N—H0A121.1C1—C6—C5119.5 (4)
C10—N—H0A121.1C1—C6—H6A120.3
F—C1—C6119.0 (4)C5—C6—H6A120.3
F—C1—C2118.6 (4)C8—C7—C4131.0 (4)
C6—C1—C2122.4 (4)C8—C7—H7A114.5
C1—C2—C3118.3 (4)C4—C7—H7A114.5
C1—C2—H2A120.9C7—C8—C9120.4 (4)
C3—C2—H2A120.9C7—C8—S129.9 (3)
C2—C3—C4121.4 (4)C9—C8—S109.6 (3)
C2—C3—H3A119.3O2—C9—N124.0 (4)
C4—C3—H3A119.3O2—C9—C8125.1 (4)
C3—C4—C5118.2 (4)N—C9—C8110.9 (4)
C3—C4—C7117.9 (4)O1—C10—N124.9 (4)
C5—C4—C7123.9 (4)O1—C10—S126.1 (4)
C6—C5—C4120.2 (4)N—C10—S109.0 (3)
F—C1—C2—C3179.1 (5)C4—C7—C8—S0.6 (9)
C6—C1—C2—C32.2 (9)C10—S—C8—C7177.2 (5)
C1—C2—C3—C42.1 (9)C10—S—C8—C91.5 (4)
C2—C3—C4—C51.0 (8)C10—N—C9—O2177.5 (5)
C2—C3—C4—C7179.8 (5)C10—N—C9—C81.9 (6)
C3—C4—C5—C60.0 (8)C7—C8—C9—O23.9 (8)
C7—C4—C5—C6179.1 (5)S—C8—C9—O2177.2 (4)
F—C1—C6—C5179.8 (5)C7—C8—C9—N176.7 (4)
C2—C1—C6—C51.2 (9)S—C8—C9—N2.2 (5)
C4—C5—C6—C10.1 (9)C9—N—C10—O1178.9 (6)
C3—C4—C7—C8174.7 (5)C9—N—C10—S0.7 (6)
C5—C4—C7—C86.3 (9)C8—S—C10—O1177.6 (6)
C4—C7—C8—C9179.3 (5)C8—S—C10—N0.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.861.982.830 (5)171
C5—H5A···S0.932.543.241 (5)133
C7—H7A···O20.932.502.870 (5)104
Symmetry code: (i) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC10H6FNO2S
Mr223.22
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)294
a, b, c (Å)26.519 (5), 36.509 (7), 3.8490 (8)
V3)3726.6 (13)
Z16
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.905, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
2087, 1059, 790
Rint0.042
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.121, 1.04
No. of reflections1059
No. of parameters136
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.66
Absolute structureFlack (1983), no Friedel pairs
Absolute structure parameter0.0 (2)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Siemens, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.861.982.830 (5)171.00
C5—H5A···S0.932.543.241 (5)133.00
C7—H7A···O20.932.502.870 (5)104.00
Symmetry code: (i) x+1/2, y, z1/2.
 

Acknowledgements

The authors thank the Center for Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBarreca, M. L., Balzarini, J., Chimirri, A., De Clercq, E., De Luca, L., Holtje, H. D., Holtje, M., Monforte, A. M., Monforte, P., Pannecouque, C., Rao, A. & Zappala, M. (2002). J. Med. Chem. 45, 5410–5413.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBotti, P., Pallin, T. D. & Tam, J. P. (1996). J. Am. Chem. Soc. 118, 10018–10024.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGuo, C., Zhang, D.-M., Tang, Q.-G. & Sun, H.-S. (2006). Acta Cryst. E62, o3994–o3995.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SHELXTL. Version 5.0). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds