Download citation
Download citation
link to html
The title compound, [Co(C2H3O2)2(C12H8N2)]n, is a polymeric complex involving bridging of CoII ions by single syn-anti acetate ligands. Each Co atom is five-coordinated by two 1,10-phenanthroline N atoms and three O atoms of acetate ligands within a bipyramidal coordination geometry. In the crystal structure, C—H...O hydrogen bonds result in the formation of a polymeric ribbon structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807053494/hk2355sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807053494/hk2355Isup2.hkl
Contains datablock I

CCDC reference: 1220603

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.042
  • wR factor = 0.127
  • Data-to-parameter ratio = 13.2

checkCIF/PLATON results

No syntax errors found




Alert level B PLAT362_ALERT_2_B Short C(sp3)-C(sp2) Bond C13 - C14 ... 1.22 Ang. PLAT362_ALERT_2_B Short C(sp3)-C(sp2) Bond C15 - C16 ... 1.23 Ang. PLAT411_ALERT_2_B Short Inter H...H Contact H5 .. H14B .. 2.02 Ang. PLAT413_ALERT_2_B Short Inter XH3 .. XHn H2 .. H16A .. 1.98 Ang. PLAT413_ALERT_2_B Short Inter XH3 .. XHn H5 .. H16B .. 2.01 Ang. PLAT430_ALERT_2_B Short Inter D...A Contact O2 .. O3 .. 2.82 Ang.
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT230_ALERT_2_C Hirshfeld Test Diff for O2 - C15 .. 5.49 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C13 - C14 .. 6.53 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Co1 - O1 .. 9.50 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Co1 - O2 .. 7.34 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Co1 - N1 .. 9.12 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Co1 - N2 .. 8.56 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C15
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Co1 (9) 2.26 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 6 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 14 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Aromatic polycyclic compounds, such as phenanthroline, quinoline and benzimidazole, are one of the most important classes of biological ligands and the coordinations of metal-aromatic polycyclic compounds are of critical importance in biological systems, organic materials and coordination chemistry (Wu et al., 2003; Pan & Xu, 2004; Liu et al., 2004; Li et al., 2005). As a bidentate flexible ligand, carboxyl groups compounds are also good ligands with excellent coordination capabilities to generate mono-, bi- or trinuclear complexes, which are commonly used as precursors for the formation of supramolecular architectures (McCann et al., 1996; McCann et al., 1995; Wai et al., 1990; Yaghi et al., 1996; Min & Lee 2002; Maira et al., 2001). We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). It has an inversion centre midway between the two CoII ions, which are bridged by two bidentate and two monodentate carboxyl groups. Each Co atom is five-coordinated by two N atoms of 1,10-phenanthroline (phen) ligand and three O atoms of acetate ligands. The Co—O and Co—N bonds are in the range of [1.941 (2)–2.320 (2) Å] and [1.984 (2)–2.008 (3) Å], respectively (Table 1).

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 2, Fig. 2) result in the formation of a polymeric ribbon structure.

Related literature top

For related literature, see: Desiraju (1995, 1997); Braga et al. (1998); Wu et al. (2003); Pan & Xu (2004); Liu et al. (2004); Li et al. (2005); McCann et al. (1995, 1996); Wai et al. (1990); Yaghi et al. (1996); Min & Lee (2002); Maira et al. (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb. Cobalt (II) nitrate hexahydrate (291.1 mg, 1 mmol), phen (180.2 mg, 1 mmol), acetic acid (120.1 mg, 2 mmol), ammonia (4 ml, 0.5 mol/l) and distilled water (10 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 453 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colorless solution was decanted from small pink crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å, for aromatic and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL (Siemens, 1996).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code (A): -x + 3/2, y + 1/2, -z + 1/2].
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
catena-Poly[[(acetato-κO)(1,10-phenanthroline-κ2N,N')cobalt(II)]-µ- acetato-κ2O:O'] top
Crystal data top
[Co(C2H3O2)2(C12H8N2)]F(000) = 732
Mr = 357.22Dx = 1.788 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 5524 reflections
a = 8.6864 (17) Åθ = 2.3–28.0°
b = 9.183 (2) ŵ = 1.32 mm1
c = 17.0024 (11) ÅT = 273 K
β = 101.897 (4)°Prism, pink
V = 1327.1 (4) Å30.41 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2779 independent reflections
Radiation source: fine-focus sealed tube2349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.617, Tmax = 0.774k = 1111
8683 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0915P)2 + 0.5483P]
where P = (Fo2 + 2Fc2)/3
2779 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.69 e Å3
2 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Co(C2H3O2)2(C12H8N2)]V = 1327.1 (4) Å3
Mr = 357.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6864 (17) ŵ = 1.32 mm1
b = 9.183 (2) ÅT = 273 K
c = 17.0024 (11) Å0.41 × 0.24 × 0.20 mm
β = 101.897 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2779 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2349 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 0.774Rint = 0.017
8683 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.03Δρmax = 0.69 e Å3
2779 reflectionsΔρmin = 0.51 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.66505 (4)0.92788 (4)0.803184 (19)0.03316 (17)
O10.6876 (3)0.7352 (2)0.75202 (12)0.0458 (5)
O20.5483 (3)1.0049 (3)0.70205 (13)0.0530 (6)
O30.6215 (3)0.5047 (2)0.74862 (15)0.0528 (6)
O40.3286 (3)1.0280 (4)0.62132 (17)0.0706 (8)
N10.6077 (3)1.0939 (3)0.86847 (16)0.0412 (5)
N20.7957 (3)0.8671 (3)0.90793 (14)0.0393 (5)
C10.5195 (4)1.2113 (4)0.8471 (2)0.0489 (7)
H10.48001.22740.79270.059*
C20.4838 (4)1.3105 (4)0.9017 (2)0.0546 (8)
H20.42341.39220.88370.065*
C30.5366 (4)1.2887 (4)0.9811 (2)0.0531 (8)
H30.51011.35311.01840.064*
C40.6330 (3)1.1659 (3)1.00699 (18)0.0424 (6)
C50.6983 (4)1.1338 (4)1.0880 (2)0.0515 (8)
H50.67461.19261.12840.062*
C60.7946 (4)1.0188 (4)1.10743 (19)0.0495 (7)
H60.83550.99951.16140.059*
C70.8360 (4)0.9255 (3)1.04817 (18)0.0416 (6)
C80.9430 (4)0.8077 (4)1.06368 (18)0.0474 (7)
H80.99310.78621.11620.057*
C90.9723 (4)0.7262 (4)1.0018 (2)0.0505 (7)
H91.04340.64931.01170.061*
C100.8957 (4)0.7581 (3)0.92380 (19)0.0466 (7)
H100.91540.70110.88170.056*
C110.7671 (3)0.9514 (3)0.96843 (17)0.0370 (6)
C120.6651 (3)1.0725 (3)0.94750 (18)0.0367 (6)
C130.6166 (3)0.6284 (3)0.77790 (16)0.0339 (5)
C140.5457 (4)0.6525 (3)0.83168 (19)0.0441 (7)
H14A0.44840.59950.82150.066*
H14B0.52430.75490.83360.066*
H14C0.60880.62220.88220.066*
C150.4032 (3)0.9782 (3)0.68379 (16)0.0366 (6)
C160.3456 (4)0.9001 (5)0.7293 (2)0.0565 (9)
H16A0.23350.91240.71810.085*
H16B0.38810.92710.78400.085*
H16C0.37050.80010.72120.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0395 (2)0.0320 (2)0.0266 (2)0.00247 (13)0.00361 (16)0.00086 (13)
O10.0559 (12)0.0429 (11)0.0393 (10)0.0051 (10)0.0115 (9)0.0023 (9)
O20.0501 (12)0.0604 (16)0.0443 (12)0.0060 (11)0.0001 (10)0.0126 (11)
O30.0516 (12)0.0417 (12)0.0654 (14)0.0049 (10)0.0127 (11)0.0152 (11)
O40.0609 (15)0.0780 (18)0.0622 (16)0.0064 (14)0.0117 (13)0.0198 (15)
N10.0439 (12)0.0375 (12)0.0420 (13)0.0019 (10)0.0083 (11)0.0042 (10)
N20.0454 (12)0.0359 (12)0.0359 (11)0.0016 (10)0.0066 (10)0.0015 (10)
C10.0508 (16)0.0449 (17)0.0500 (16)0.0058 (14)0.0078 (14)0.0047 (14)
C20.0521 (17)0.0441 (17)0.067 (2)0.0122 (14)0.0108 (16)0.0045 (16)
C30.0532 (17)0.0442 (18)0.065 (2)0.0079 (14)0.0206 (16)0.0054 (15)
C40.0434 (14)0.0413 (15)0.0456 (15)0.0025 (12)0.0161 (12)0.0028 (12)
C50.0588 (18)0.0550 (19)0.0451 (16)0.0029 (16)0.0206 (15)0.0098 (14)
C60.0535 (17)0.0598 (19)0.0356 (14)0.0007 (15)0.0100 (13)0.0008 (14)
C70.0453 (15)0.0425 (16)0.0366 (14)0.0051 (12)0.0077 (12)0.0027 (11)
C80.0528 (16)0.0476 (17)0.0387 (14)0.0008 (14)0.0025 (13)0.0067 (13)
C90.0538 (17)0.0405 (16)0.0538 (17)0.0087 (13)0.0032 (14)0.0043 (14)
C100.0517 (16)0.0391 (15)0.0471 (16)0.0065 (13)0.0059 (13)0.0051 (13)
C110.0411 (14)0.0334 (13)0.0373 (14)0.0032 (11)0.0097 (11)0.0001 (11)
C120.0376 (13)0.0348 (14)0.0385 (14)0.0030 (10)0.0097 (11)0.0024 (11)
C130.0343 (12)0.0321 (13)0.0344 (13)0.0004 (10)0.0048 (10)0.0030 (11)
C140.0571 (17)0.0342 (14)0.0520 (16)0.0042 (12)0.0368 (15)0.0044 (12)
C150.0378 (13)0.0356 (13)0.0338 (13)0.0001 (11)0.0012 (11)0.0002 (11)
C160.0439 (16)0.088 (3)0.0378 (16)0.0182 (16)0.0085 (13)0.0191 (17)
Geometric parameters (Å, º) top
Co1—O11.999 (2)C4—C51.408 (5)
Co1—O21.941 (2)C5—C61.346 (5)
Co1—O3i2.320 (2)C5—H50.9300
Co1—N12.008 (3)C6—C71.424 (5)
Co1—N21.984 (2)C6—H60.9300
O1—C131.283 (4)C7—C111.385 (4)
O2—C151.259 (4)C7—C81.415 (5)
O3—C131.245 (4)C8—C91.357 (5)
O3—Co1ii2.320 (2)C8—H80.9300
O4—C151.214 (4)C9—C101.387 (5)
N1—C11.329 (4)C9—H90.9300
N1—C121.348 (4)C10—H100.9300
N2—C101.316 (4)C11—C121.421 (4)
N2—C111.351 (4)C13—C141.223 (4)
C1—C21.381 (5)C14—H14A0.9600
C1—H10.9300C14—H14B0.9600
C2—C31.348 (5)C14—H14C0.9600
C2—H20.9300C15—C161.234 (4)
C3—C41.419 (5)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C121.398 (4)C16—H16C0.9600
O1—Co1—O291.00 (10)C11—C7—C8116.6 (3)
O1—Co1—O3i86.94 (9)C11—C7—C6118.0 (3)
O2—Co1—O3i82.25 (9)C8—C7—C6125.4 (3)
O1—Co1—N1165.97 (10)C9—C8—C7119.9 (3)
O1—Co1—N293.00 (9)C9—C8—H8120.1
O2—Co1—N193.96 (11)C7—C8—H8120.1
O2—Co1—N2174.47 (10)C8—C9—C10119.7 (3)
O3—Co1—N1i138.62 (4)C8—C9—H9120.2
O3—Co1—N2i125.59 (5)C10—C9—H9120.2
N1—Co1—N283.03 (10)N2—C10—C9121.5 (3)
C13—O1—Co1115.45 (18)N2—C10—H10119.2
C15—O2—Co1117.46 (19)C9—C10—H10119.2
C13—O3—Co1ii121.71 (18)N2—C11—C7122.5 (3)
C1—N1—C12117.7 (3)N2—C11—C12117.4 (3)
C1—N1—Co1131.2 (2)C7—C11—C12120.0 (3)
C12—N1—Co1110.95 (19)N1—C12—C4123.0 (3)
C10—N2—C11119.8 (3)N1—C12—C11116.6 (3)
C10—N2—Co1129.0 (2)C4—C12—C11120.4 (3)
C11—N2—Co1111.18 (19)C14—C13—O3121.9 (3)
N1—C1—C2123.3 (3)C14—C13—O1118.0 (3)
N1—C1—H1118.4O3—C13—O1120.1 (3)
C2—C1—H1118.4C13—C14—H14A109.5
C3—C2—C1119.8 (3)C13—C14—H14B109.5
C3—C2—H2120.1H14A—C14—H14B109.5
C1—C2—H2120.1C13—C14—H14C109.5
C2—C3—C4119.1 (3)H14A—C14—H14C109.5
C2—C3—H3120.5H14B—C14—H14C109.5
C4—C3—H3120.5O4—C15—C16123.8 (3)
C12—C4—C5118.6 (3)O4—C15—O2118.0 (3)
C12—C4—C3117.1 (3)C16—C15—O2118.3 (3)
C5—C4—C3124.3 (3)C15—C16—H16A109.5
C6—C5—C4120.7 (3)C15—C16—H16B109.5
C6—C5—H5119.7H16A—C16—H16B109.5
C4—C5—H5119.7C15—C16—H16C109.5
C5—C6—C7122.2 (3)H16A—C16—H16C109.5
C5—C6—H6118.9H16B—C16—H16C109.5
C7—C6—H6118.9
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4iii0.932.513.327 (4)147
C10—H10···O2ii0.932.363.263 (4)164
Symmetry codes: (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(C2H3O2)2(C12H8N2)]
Mr357.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)8.6864 (17), 9.183 (2), 17.0024 (11)
β (°) 101.897 (4)
V3)1327.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.41 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.617, 0.774
No. of measured, independent and
observed [I > 2σ(I)] reflections
8683, 2779, 2349
Rint0.017
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.127, 1.03
No. of reflections2779
No. of parameters210
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.51

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996).

Selected geometric parameters (Å, º) top
Co1—O11.999 (2)Co1—N12.008 (3)
Co1—O21.941 (2)Co1—N21.984 (2)
Co1—O3i2.320 (2)
O1—Co1—O291.00 (10)O2—Co1—N193.96 (11)
O1—Co1—O3i86.94 (9)O2—Co1—N2174.47 (10)
O2—Co1—O3i82.25 (9)O3—Co1—N1i138.62 (4)
O1—Co1—N1165.97 (10)O3—Co1—N2i125.59 (5)
O1—Co1—N293.00 (9)N1—Co1—N283.03 (10)
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4ii0.932.513.327 (4)147
C10—H10···O2iii0.932.363.263 (4)164
Symmetry codes: (ii) x+1/2, y+1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds