Download citation
Download citation
link to html
The asymmetric unit of the title compound, [Mn(H2O)6](C7H7O3S)2, contains one half-cation and one anion; the Mn atom lies on an inversion centre. In the crystal structure, inter­molecular O—H...O and O—H...S hydrogen bonds result in the formation of a supra­molecular network structure; an intra­molecular C—H...O hydrogen bond is also present.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807052051/hk2348sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807052051/hk2348Isup2.hkl
Contains datablock I

CCDC reference: 1245644

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.041
  • wR factor = 0.117
  • Data-to-parameter ratio = 13.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for Mn1
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mn1 - O1 .. 6.53 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mn1 - O2 .. 9.03 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mn1 - O3 .. 7.33 su PLAT245_ALERT_2_C U(iso) H1A Smaller than U(eq) O1 by ... 0.02 AngSq PLAT334_ALERT_2_C Small Average Benzene C-C Dist. C1 -C6 1.35 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H3A .. S1 .. 3.00 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H1B .. S1 .. 2.98 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Mn1 (3) 3.11 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 9
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The crystal structure of hexaaquacopper(II) bis(4-methylbenzenesulfonate), (II), has previously been reported (Zhong et al., 2007). The crystal structure determination of the title compound, (I), has been carried out in order to elucidate the molecular conformation and to compare it with that of (II). We report herein the crystal structure of (I).

The asymmetric unit of the title compound, (I), (Fig. 1) contains one half -cation and one anion; the Mn atom lies on an inversion centre, as in (II). The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987).

In the crystal structure, intermolecular O—H···O and O—H···S hydrogen bonds (Fig. 2 and Table 2) result in the formation of a supramolecular network structure; an intramolecular C—H···O hydrogen bond is also present, as in (II).

The both compounds, (I) and (II), are isostructural.

Related literature top

For a related structure, see: Zhong et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb. Lanthanum (III) nitrate hexahydrate (216.4 mg, 0.5 mmol), manganous nitrate hexahydrate (143.5 mg, 0.5 mmol), 4-methylbenzene- sulfonic acid (344.4 mg, 2 mmol), ammonia (0.5 mol/l, 4 ml) and distilled water (10 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 453 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colorless solution was decanted from small colorless crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement top

H atoms (for H2O) were located in difference syntheses and refined isotropically [O—H = 0.814 (18)–0.877 (19) Å and Uiso(H) = 0.065 (10) -0.11 (2) Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å, for aromatic and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and x = 1.5 for methyl H atoms.

Structure description top

The crystal structure of hexaaquacopper(II) bis(4-methylbenzenesulfonate), (II), has previously been reported (Zhong et al., 2007). The crystal structure determination of the title compound, (I), has been carried out in order to elucidate the molecular conformation and to compare it with that of (II). We report herein the crystal structure of (I).

The asymmetric unit of the title compound, (I), (Fig. 1) contains one half -cation and one anion; the Mn atom lies on an inversion centre, as in (II). The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987).

In the crystal structure, intermolecular O—H···O and O—H···S hydrogen bonds (Fig. 2 and Table 2) result in the formation of a supramolecular network structure; an intramolecular C—H···O hydrogen bond is also present, as in (II).

The both compounds, (I) and (II), are isostructural.

For a related structure, see: Zhong et al. (2007). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL (Siemens, 1996.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code (A): 3/2 - x, 1/2 - y, 1/2 - z].
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
Hexaaquamanganese(II) bis(4-methylbenzenesulfonate) top
Crystal data top
[Mn(H2O)6](C7H7O3S)2F(000) = 526
Mr = 505.41Dx = 1.601 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5239 reflections
a = 7.002 (2) Åθ = 2.5–27.8°
b = 6.0153 (17) ŵ = 0.89 mm1
c = 24.9011 (11) ÅT = 273 K
β = 90.997 (5)°Prism, colorless
V = 1048.7 (4) Å30.48 × 0.37 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2110 independent reflections
Radiation source: fine-focus sealed tube1829 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 26.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.673, Tmax = 0.845k = 67
6632 measured reflectionsl = 3130
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0673P)2 + 0.7242P]
where P = (Fo2 + 2Fc2)/3
2110 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.41 e Å3
9 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Mn(H2O)6](C7H7O3S)2V = 1048.7 (4) Å3
Mr = 505.41Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.002 (2) ŵ = 0.89 mm1
b = 6.0153 (17) ÅT = 273 K
c = 24.9011 (11) Å0.48 × 0.37 × 0.20 mm
β = 90.997 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2110 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1829 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.845Rint = 0.024
6632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0419 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.41 e Å3
2110 reflectionsΔρmin = 0.46 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.00000.00000.03519 (19)
S10.01448 (10)0.60823 (11)0.90523 (3)0.0493 (2)
O10.7232 (4)0.1027 (4)0.04798 (13)0.0811 (8)
O20.5084 (3)0.2890 (4)0.03489 (11)0.0634 (6)
O30.3032 (4)0.1043 (4)0.05314 (13)0.0820 (8)
O40.1537 (4)0.5144 (3)0.93043 (10)0.0625 (6)
O50.0142 (3)0.8389 (4)0.90908 (9)0.0620 (6)
O60.1915 (4)0.5171 (3)0.92383 (10)0.0633 (6)
C10.0132 (6)0.4349 (8)0.72946 (15)0.0735 (10)
C20.0456 (6)0.6327 (8)0.74479 (16)0.0821 (11)
H20.08300.73560.71880.099*
C30.0533 (6)0.6926 (7)0.79872 (15)0.0717 (9)
H30.09320.83440.80830.086*
C40.0031 (4)0.5457 (5)0.83685 (13)0.0539 (7)
C50.0530 (6)0.3421 (6)0.82199 (14)0.0675 (9)
H50.08600.23630.84780.081*
C60.0614 (6)0.2917 (8)0.76891 (16)0.0795 (11)
H60.10270.15050.75930.095*
C70.0320 (8)0.3697 (11)0.67176 (17)0.1042 (16)
H7A0.01560.48740.64920.156*
H7B0.04030.23680.66490.156*
H7C0.16400.34320.66420.156*
H1A0.762 (5)0.228 (3)0.0533 (13)0.065 (10)*
H2A0.616 (4)0.343 (7)0.0478 (17)0.088 (13)*
H3A0.258 (5)0.236 (3)0.0545 (18)0.100 (15)*
H1B0.804 (5)0.022 (5)0.0643 (17)0.088 (14)*
H2B0.432 (5)0.385 (8)0.049 (2)0.11 (2)*
H3B0.204 (4)0.030 (5)0.0628 (19)0.093 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0354 (3)0.0223 (3)0.0479 (3)0.00068 (18)0.0018 (2)0.00160 (19)
S10.0511 (4)0.0356 (4)0.0614 (4)0.0005 (3)0.0032 (3)0.0004 (3)
O10.0832 (17)0.0386 (13)0.120 (2)0.0051 (12)0.0439 (16)0.0007 (13)
O20.0578 (13)0.0417 (12)0.0908 (17)0.0012 (10)0.0045 (12)0.0127 (11)
O30.0897 (18)0.0395 (13)0.119 (2)0.0000 (12)0.0508 (16)0.0046 (13)
O40.0699 (14)0.0449 (12)0.0722 (14)0.0046 (10)0.0104 (11)0.0025 (10)
O50.0668 (13)0.0354 (10)0.0839 (15)0.0008 (9)0.0060 (11)0.0021 (10)
O60.0673 (14)0.0443 (12)0.0788 (15)0.0044 (9)0.0176 (11)0.0028 (10)
C10.065 (2)0.094 (3)0.061 (2)0.008 (2)0.0023 (16)0.0021 (19)
C20.083 (3)0.095 (3)0.069 (2)0.008 (2)0.0002 (19)0.022 (2)
C30.076 (2)0.066 (2)0.074 (2)0.0121 (17)0.0065 (17)0.0151 (18)
C40.0478 (15)0.0483 (16)0.0657 (18)0.0001 (12)0.0015 (13)0.0049 (13)
C50.087 (2)0.0522 (19)0.0629 (18)0.0116 (17)0.0012 (16)0.0034 (15)
C60.086 (3)0.077 (3)0.076 (2)0.008 (2)0.0029 (19)0.017 (2)
C70.097 (3)0.146 (5)0.069 (2)0.005 (3)0.008 (2)0.007 (3)
Geometric parameters (Å, º) top
Mn1—O12.046 (2)O3—H3B0.865 (19)
Mn1—O21.944 (2)C1—C21.318 (6)
Mn1—O32.027 (2)C1—C61.345 (6)
Mn1—O2i1.944 (2)C1—C71.497 (6)
Mn1—O3i2.026 (2)C2—C31.392 (6)
Mn1—O1i2.046 (2)C2—H20.9300
S1—O51.391 (2)C3—C41.339 (5)
S1—O61.439 (2)C3—H30.9300
S1—O41.440 (2)C4—C51.341 (5)
S1—C41.747 (3)C5—C61.358 (5)
O1—H1A0.814 (18)C5—H50.9300
O1—H1B0.84 (4)C6—H60.9300
O2—H2A0.877 (19)C7—H7A0.9600
O2—H2B0.87 (4)C7—H7B0.9600
O3—H3A0.853 (19)C7—H7C0.9600
O1i—Mn1—O1180H3A—O3—H3B100 (2)
O1—Mn1—O289.54 (11)C2—C1—C6116.2 (4)
O1i—Mn1—O290.46 (11)C2—C1—C7123.2 (4)
O1i—Mn1—O387.34 (14)C6—C1—C7120.5 (5)
O1—Mn1—O392.66 (14)C1—C2—C3122.0 (4)
O2—Mn1—O2i180C1—C2—H2119.0
O2—Mn1—O3i89.97 (11)C3—C2—H2119.0
O2—Mn1—O390.03 (11)C4—C3—C2119.9 (4)
O3i—Mn1—O3180C4—C3—H3120.0
O2i—Mn1—O3i90.03 (11)C2—C3—H3120.0
O1i—Mn1—O2i89.54 (11)C3—C4—C5118.8 (3)
O1i—Mn1—O3i92.66 (14)C3—C4—S1122.2 (3)
O5—S1—O6110.95 (14)C5—C4—S1119.0 (3)
O5—S1—O4111.15 (14)C4—C5—C6119.3 (3)
O6—S1—O4114.40 (15)C4—C5—H5120.3
O5—S1—C4106.39 (15)C6—C5—H5120.3
O6—S1—C4106.60 (15)C1—C6—C5123.6 (4)
O4—S1—C4106.84 (15)C1—C6—H6118.2
Mn1—O1—H1A129 (2)C5—C6—H6118.2
Mn1—O1—H1B127 (3)C1—C7—H7A109.5
H1A—O1—H1B104 (3)C1—C7—H7B109.5
Mn1—O2—H2A121 (3)H7A—C7—H7B109.5
Mn1—O2—H2B140 (3)C1—C7—H7C109.5
H2A—O2—H2B98 (3)H7A—C7—H7C109.5
Mn1—O3—H3A125 (3)H7B—C7—H7C109.5
Mn1—O3—H3B125 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O50.932.562.894 (5)102
O3—H3A···S1ii0.85 (2)3.00 (3)3.798 (3)157 (3)
O1—H1B···O5iii0.84 (4)1.95 (2)2.781 (3)170 (5)
O1—H1B···S1iii0.84 (4)2.98 (2)3.779 (3)158 (3)
O2—H2B···O6iv0.87 (4)1.92 (3)2.724 (3)154 (5)
O3—H3B···O5iv0.87 (2)1.90 (2)2.756 (3)171 (4)
O1—H1A···O4v0.81 (2)1.86 (2)2.674 (3)177 (4)
O2—H2A···O4iii0.88 (2)1.90 (2)2.770 (3)173 (4)
O3—H3A···O6ii0.85 (2)1.84 (2)2.669 (3)164 (4)
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Mn(H2O)6](C7H7O3S)2
Mr505.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)7.002 (2), 6.0153 (17), 24.9011 (11)
β (°) 90.997 (5)
V3)1048.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.48 × 0.37 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.673, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
6632, 2110, 1829
Rint0.024
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.01
No. of reflections2110
No. of parameters158
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.46

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996), SHELXTL (Siemens, 1996.

Selected geometric parameters (Å, º) top
Mn1—O12.046 (2)Mn1—O32.027 (2)
Mn1—O21.944 (2)
O1i—Mn1—O1180O2—Mn1—O2i180
O1—Mn1—O289.54 (11)O2—Mn1—O3i89.97 (11)
O1i—Mn1—O290.46 (11)O2—Mn1—O390.03 (11)
O1i—Mn1—O387.34 (14)O3i—Mn1—O3180
O1—Mn1—O392.66 (14)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O50.932.562.894 (5)102
O3—H3A···S1ii0.853 (19)3.00 (3)3.798 (3)157 (3)
O1—H1B···O5iii0.84 (4)1.95 (2)2.781 (3)170 (5)
O1—H1B···S1iii0.84 (4)2.98 (2)3.779 (3)158 (3)
O2—H2B···O6iv0.87 (4)1.92 (3)2.724 (3)154 (5)
O3—H3B···O5iv0.865 (19)1.90 (2)2.756 (3)171 (4)
O1—H1A···O4v0.814 (18)1.861 (18)2.674 (3)177 (4)
O2—H2A···O4iii0.877 (19)1.90 (2)2.770 (3)173 (4)
O3—H3A···O6ii0.853 (19)1.84 (2)2.669 (3)164 (4)
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x+1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds