Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the title compound, C14H12N2O2, is stabilized by inter­molecular N—H...O and C—H...N hydrogen bonds and also by C—H...π and π–π [centroid–centroid distance 3.822 (1) Å and a plane-to-plane separation 3.697 Å] inter­actions. The N—H...O and C—H...N hydrogen bonds generate edge-fused R21(6)R44(24)R21(6) ring motifs. The phthalide group is planar and oriented with respect to the pyridine ring at a dihedral angle of 83.21 (9)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807049677/hk2338sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807049677/hk2338Isup2.hkl
Contains datablock I

CCDC reference: 667379

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.037
  • wR factor = 0.095
  • Data-to-parameter ratio = 11.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.64 mm PLAT230_ALERT_2_C Hirshfeld Test Diff for C1 - C2 .. 6.23 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C2 - C3 .. 6.59 su PLAT480_ALERT_4_C Long H...A H-Bond Reported H4 .. N2 .. 2.78 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H11 .. N2 .. 2.70 Ang.
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C8 = ... R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Phthalides (isobenzofuranones) possess several important properties, such as fungicidal (Aoki et al., 1973; Lacova, 1973), bactericidal and herbicidal (Lacova, 1973), analgesic (Elderfield, 1951), hypertensive and vasorelaxant activities (Tsi & Tan, 1997). In addition, phthalide derivatives are useful in the treatment of circulatory and heart-related diseases (Bellasio, 1974). They are also found to be associated with pesticidal activities (Roy & Sarkar, 2005). Considering the potential interest of such phthalide-3-phosphonates in synthetic organic chemistry, and as agrochemical and pharmaceutical agents, we decided to investigate the solid-state structures of 3-substituted phthalides by X-ray diffraction methods. As part of a continuing study of the interplay between molecular conformation and supramolecular aggregation in 3-substituted phthalides, we report herein the structure of the title compound, (I).

The geometry of the title molecule, (I), (Fig. 1) does not show any significant difference from the average geometry found for 3-anilinoisobenzofuran-1(3H) -ones (Büyükgüngör & Odabaşoğlu, 2006a,b, 2007; Odabaşoğlu & Büyükgüngör, 2006a,b, 2007a,b,c). The phthalide group (C1—C8/O2) is planar, the largest deviation from the mean plane being -0.017 (2) Å (for C2). The dihedral angle between the planar phthalide group and phenyl ring is 83.21 (9)°.

In (I), the crystal packing is stabilized by intermolecular N—H···O and C—H···N hydrogen bonds (Table 1, Fig. 2), which generate edge-fused R21(6)R44(24)R21(6) ring motifs (Etter, 1990). These motifs also generate a three dimensional network by C—H···π and π···π interactions (Table 1, Fig. 3), where the π···π interactions occur between (C2—C7) and (C9—C14) rings and their symmetry-related counterparts [symmetry code: x, 1/2 - y, 1/2 + z], with a centroid-to-centroid distance of 3.822 (1) Å and a plane to plane separation of 3.697 Å.

Related literature top

For related structures, see: Büyükgüngör & Odabaşoğlu (2006a,b, 2007); Odabaşoğlu & Büyükgüngör (2006a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r, 2007a,b,c,d). For related literature, see: Aoki et al. (1973); Lacova (1973); Elderfield (1951); Tsi & Tan (1997); Bellasio (1974); Roy & Sarkar (2005). For general background, see: Etter (1990).

Experimental top

The title compound was prepared according to the method described by Odabaşoğlu & Büyükgüngör (2006a), using phthalaldehydic acid and 2-hydroxy-5-chloroaniline as starting materials (yield; 80%; m.p. 420–422 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (95%) at room temperature.

Refinement top

H atoms were located in a difference syntheses and refined isotropically [N—H = 0.88 (2) Å, Uiso(H) = 0.101 (7) Å2 and C—H = 0.93 (3)–1.02 (2) Å, Uiso(H) = 0.075 (5)–0.149 (10) Å2].

Structure description top

Phthalides (isobenzofuranones) possess several important properties, such as fungicidal (Aoki et al., 1973; Lacova, 1973), bactericidal and herbicidal (Lacova, 1973), analgesic (Elderfield, 1951), hypertensive and vasorelaxant activities (Tsi & Tan, 1997). In addition, phthalide derivatives are useful in the treatment of circulatory and heart-related diseases (Bellasio, 1974). They are also found to be associated with pesticidal activities (Roy & Sarkar, 2005). Considering the potential interest of such phthalide-3-phosphonates in synthetic organic chemistry, and as agrochemical and pharmaceutical agents, we decided to investigate the solid-state structures of 3-substituted phthalides by X-ray diffraction methods. As part of a continuing study of the interplay between molecular conformation and supramolecular aggregation in 3-substituted phthalides, we report herein the structure of the title compound, (I).

The geometry of the title molecule, (I), (Fig. 1) does not show any significant difference from the average geometry found for 3-anilinoisobenzofuran-1(3H) -ones (Büyükgüngör & Odabaşoğlu, 2006a,b, 2007; Odabaşoğlu & Büyükgüngör, 2006a,b, 2007a,b,c). The phthalide group (C1—C8/O2) is planar, the largest deviation from the mean plane being -0.017 (2) Å (for C2). The dihedral angle between the planar phthalide group and phenyl ring is 83.21 (9)°.

In (I), the crystal packing is stabilized by intermolecular N—H···O and C—H···N hydrogen bonds (Table 1, Fig. 2), which generate edge-fused R21(6)R44(24)R21(6) ring motifs (Etter, 1990). These motifs also generate a three dimensional network by C—H···π and π···π interactions (Table 1, Fig. 3), where the π···π interactions occur between (C2—C7) and (C9—C14) rings and their symmetry-related counterparts [symmetry code: x, 1/2 - y, 1/2 + z], with a centroid-to-centroid distance of 3.822 (1) Å and a plane to plane separation of 3.697 Å.

For related structures, see: Büyükgüngör & Odabaşoğlu (2006a,b, 2007); Odabaşoğlu & Büyükgüngör (2006a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r, 2007a,b,c,d). For related literature, see: Aoki et al. (1973); Lacova (1973); Elderfield (1951); Tsi & Tan (1997); Bellasio (1974); Roy & Sarkar (2005). For general background, see: Etter (1990).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level
[Figure 2] Fig. 2. A partial packing diagram of (I), showing the formation of R44(24) motif [symmetry codes: (i) x - 1, y, z; (ii) x - 1/2, y, 1/2 - z; (iii) x - 1/2, 1/2 - y, 1 - z].
[Figure 3] Fig. 3. A partial packing diagram of (I), showing the C—H···N and N—H···O hydrogen bonds along y-axis [symmetry codes: (i) x - 1/2, y, 1/2 - z; (ii) x - 1/2, y - 1/2, 1 - z; (iii) x + 1/2, y, 1/2 - z; (iv) x - 1/2, y - 1/2, 1 - z].
3-(6-Methyl-2-pyridylamino)isobenzofuran-1(3H)-one top
Crystal data top
C14H12N2O2F(000) = 1008
Mr = 240.26Dx = 1.292 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 11933 reflections
a = 10.1367 (7) Åθ = 1.8–27.2°
b = 22.519 (2) ŵ = 0.09 mm1
c = 10.8253 (8) ÅT = 296 K
V = 2471.0 (3) Å3Prism, colorless
Z = 80.64 × 0.36 × 0.14 mm
Data collection top
Stoe IPDSII
diffractometer
2437 independent reflections
Radiation source: fine-focus sealed tube1265 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.8°
ω scansh = 1212
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2727
Tmin = 0.970, Tmax = 0.990l = 1313
17021 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037All H-atom parameters refined
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0472P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max < 0.001
2437 reflectionsΔρmax = 0.09 e Å3
212 parametersΔρmin = 0.09 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0065 (8)
Crystal data top
C14H12N2O2V = 2471.0 (3) Å3
Mr = 240.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.1367 (7) ŵ = 0.09 mm1
b = 22.519 (2) ÅT = 296 K
c = 10.8253 (8) Å0.64 × 0.36 × 0.14 mm
Data collection top
Stoe IPDSII
diffractometer
2437 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1265 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.990Rint = 0.056
17021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.095All H-atom parameters refined
S = 0.89Δρmax = 0.09 e Å3
2437 reflectionsΔρmin = 0.09 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.04032 (18)0.07038 (8)0.25289 (16)0.1286 (6)
O20.90927 (13)0.10288 (5)0.40304 (13)0.0841 (4)
N10.68545 (16)0.10890 (7)0.46993 (17)0.0761 (4)
N20.75182 (13)0.18310 (6)0.60452 (13)0.0676 (4)
C10.9574 (2)0.06011 (9)0.3292 (2)0.0861 (6)
C20.89111 (19)0.00431 (7)0.35851 (16)0.0757 (5)
C30.9070 (3)0.05216 (11)0.3075 (2)0.0988 (7)
C40.8291 (4)0.09672 (11)0.3527 (3)0.1144 (9)
C50.7376 (3)0.08594 (11)0.4421 (3)0.1152 (9)
C60.7198 (3)0.03037 (10)0.4921 (2)0.0935 (7)
C70.79959 (19)0.01458 (7)0.44879 (16)0.0699 (5)
C80.80476 (19)0.07843 (7)0.48549 (19)0.0697 (5)
C90.66928 (16)0.16633 (7)0.51600 (16)0.0662 (5)
C100.56963 (19)0.20219 (10)0.4707 (2)0.0774 (5)
C110.5581 (2)0.25831 (10)0.5175 (2)0.0854 (6)
C120.6424 (2)0.27651 (10)0.6096 (2)0.0822 (6)
C130.73612 (17)0.23811 (8)0.65240 (16)0.0698 (5)
C140.8268 (3)0.25249 (12)0.7571 (2)0.0890 (6)
H10.642 (2)0.0998 (9)0.402 (2)0.101 (7)*
H30.975 (2)0.0544 (9)0.2473 (19)0.097 (7)*
H40.846 (2)0.1345 (13)0.322 (3)0.149 (10)*
H50.681 (2)0.1199 (13)0.470 (2)0.145 (9)*
H60.652 (2)0.0223 (10)0.555 (2)0.127 (9)*
H80.8356 (16)0.0860 (7)0.5700 (17)0.075 (5)*
H100.5152 (18)0.1888 (8)0.4067 (18)0.092 (6)*
H110.489 (2)0.2842 (10)0.4852 (17)0.104 (7)*
H120.6383 (19)0.3151 (9)0.6451 (19)0.104 (7)*
H14A0.796 (2)0.2350 (10)0.839 (2)0.125 (8)*
H14B0.838 (2)0.2951 (12)0.767 (2)0.133 (8)*
H14C0.914 (3)0.2369 (10)0.741 (2)0.131 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1376 (13)0.1322 (14)0.1159 (12)0.0053 (11)0.0510 (11)0.0183 (10)
O20.0910 (9)0.0629 (7)0.0984 (9)0.0112 (7)0.0080 (8)0.0032 (7)
N10.0799 (11)0.0667 (9)0.0816 (11)0.0010 (8)0.0150 (9)0.0069 (8)
N20.0709 (9)0.0630 (9)0.0688 (9)0.0049 (7)0.0005 (7)0.0018 (7)
C10.0979 (15)0.0846 (14)0.0760 (13)0.0008 (12)0.0063 (12)0.0061 (11)
C20.0993 (14)0.0608 (11)0.0671 (11)0.0033 (10)0.0075 (10)0.0013 (9)
C30.132 (2)0.0886 (17)0.0760 (14)0.0162 (15)0.0067 (15)0.0102 (12)
C40.173 (3)0.0621 (15)0.108 (2)0.0023 (17)0.029 (2)0.0098 (14)
C50.156 (3)0.0672 (16)0.123 (2)0.0222 (16)0.0116 (19)0.0085 (15)
C60.1133 (18)0.0702 (14)0.0970 (16)0.0151 (12)0.0007 (14)0.0097 (12)
C70.0862 (12)0.0593 (10)0.0641 (10)0.0044 (9)0.0073 (10)0.0030 (9)
C80.0821 (12)0.0608 (10)0.0662 (12)0.0044 (9)0.0026 (10)0.0005 (9)
C90.0693 (11)0.0625 (11)0.0669 (11)0.0044 (9)0.0053 (9)0.0021 (8)
C100.0692 (12)0.0848 (14)0.0781 (12)0.0037 (10)0.0038 (11)0.0058 (11)
C110.0792 (14)0.0812 (14)0.0958 (16)0.0155 (11)0.0072 (12)0.0070 (12)
C120.0846 (14)0.0691 (13)0.0930 (15)0.0054 (11)0.0195 (12)0.0039 (11)
C130.0717 (11)0.0647 (11)0.0730 (11)0.0081 (9)0.0128 (9)0.0058 (9)
C140.0944 (17)0.0871 (15)0.0855 (16)0.0145 (14)0.0044 (13)0.0210 (12)
Geometric parameters (Å, º) top
C1—O11.201 (2)C8—H80.982 (18)
C1—O21.343 (2)C9—N21.327 (2)
C1—C21.460 (3)C9—C101.383 (2)
C2—C71.367 (2)C9—N11.396 (2)
C2—C31.396 (3)C10—C111.367 (3)
C3—C41.367 (4)C10—H100.94 (2)
C3—H30.95 (2)C11—C121.376 (3)
C4—C51.363 (4)C11—H110.97 (2)
C4—H40.93 (3)C12—C131.365 (3)
C5—C61.375 (4)C12—H120.95 (2)
C5—H51.00 (3)C13—N21.352 (2)
C6—C71.378 (3)C13—C141.495 (3)
C6—H60.99 (2)C14—H14A1.02 (2)
C7—C81.493 (2)C14—H14B0.97 (3)
C8—N11.401 (2)C14—H14C0.97 (2)
C8—O21.491 (2)N1—H10.88 (2)
O1—C1—O2121.7 (2)N2—C9—C10123.38 (17)
O1—C1—C2129.6 (2)N2—C9—N1116.60 (16)
O2—C1—C2108.70 (18)C10—C9—N1120.01 (18)
C7—C2—C3121.0 (2)C11—C10—C9118.1 (2)
C7—C2—C1108.79 (16)C11—C10—H10121.5 (12)
C3—C2—C1130.2 (2)C9—C10—H10120.3 (12)
C4—C3—C2117.4 (3)C10—C11—C12119.4 (2)
C4—C3—H3128.7 (13)C10—C11—H11118.7 (12)
C2—C3—H3113.8 (13)C12—C11—H11121.9 (12)
C5—C4—C3121.1 (3)C13—C12—C11119.3 (2)
C5—C4—H4122.9 (17)C13—C12—H12118.2 (12)
C3—C4—H4115.9 (17)C11—C12—H12122.5 (12)
C4—C5—C6122.1 (3)N2—C13—C12122.15 (18)
C4—C5—H5118.0 (15)N2—C13—C14114.63 (18)
C6—C5—H5120.0 (15)C12—C13—C14123.20 (19)
C5—C6—C7117.2 (3)C13—C14—H14A112.6 (13)
C5—C6—H6122.1 (14)C13—C14—H14B111.6 (14)
C7—C6—H6120.7 (14)H14A—C14—H14B108.8 (19)
C2—C7—C6121.15 (19)C13—C14—H14C110.4 (14)
C2—C7—C8109.23 (16)H14A—C14—H14C107 (2)
C6—C7—C8129.63 (19)H14B—C14—H14C106 (2)
N1—C8—O2111.15 (15)C9—N1—C8120.81 (16)
N1—C8—C7114.17 (16)C9—N1—H1117.0 (13)
O2—C8—C7102.79 (14)C8—N1—H1114.8 (13)
N1—C8—H8107.6 (10)C9—N2—C13117.60 (15)
O2—C8—H8105.5 (10)C1—O2—C8110.47 (14)
C7—C8—H8115.2 (9)
O1—C1—C2—C7177.3 (2)N2—C9—C10—C111.8 (3)
O2—C1—C2—C71.7 (2)N1—C9—C10—C11179.36 (17)
O1—C1—C2—C31.0 (4)C9—C10—C11—C121.9 (3)
O2—C1—C2—C3179.99 (19)C10—C11—C12—C130.1 (3)
C7—C2—C3—C41.0 (3)C11—C12—C13—N22.1 (3)
C1—C2—C3—C4179.2 (2)C11—C12—C13—C14176.25 (19)
C2—C3—C4—C51.5 (4)N2—C9—N1—C820.1 (2)
C3—C4—C5—C60.7 (4)C10—C9—N1—C8160.99 (17)
C4—C5—C6—C70.6 (4)O2—C8—N1—C973.3 (2)
C3—C2—C7—C60.2 (3)C7—C8—N1—C9170.95 (16)
C1—C2—C7—C6178.32 (18)C10—C9—N2—C130.3 (2)
C3—C2—C7—C8179.97 (18)N1—C9—N2—C13178.60 (15)
C1—C2—C7—C81.5 (2)C12—C13—N2—C92.3 (2)
C5—C6—C7—C21.0 (3)C14—C13—N2—C9176.23 (16)
C5—C6—C7—C8179.2 (2)O1—C1—O2—C8177.9 (2)
C2—C7—C8—N1121.33 (18)C2—C1—O2—C81.1 (2)
C6—C7—C8—N158.5 (3)N1—C8—O2—C1122.34 (17)
C2—C7—C8—O20.84 (19)C7—C8—O2—C10.2 (2)
C6—C7—C8—O2178.99 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (2)2.08 (2)2.955 (2)174.9 (19)
C4—H4···N2ii0.93 (3)2.78 (3)3.417 (3)126.99 (18)
C11—H11···N2iii0.97 (2)2.70 (2)3.623 (2)158.83 (19)
C14—H14A···Cg1iv1.02 (2)2.98 (2)3.780 (3)136.3 (2)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+3/2, y, z1/2; (iii) x1/2, y+1/2, z+1; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12N2O2
Mr240.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)10.1367 (7), 22.519 (2), 10.8253 (8)
V3)2471.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.64 × 0.36 × 0.14
Data collection
DiffractometerStoe IPDSII
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.970, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
17021, 2437, 1265
Rint0.056
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 0.89
No. of reflections2437
No. of parameters212
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.09, 0.09

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (2)2.08 (2)2.955 (2)174.9 (19)
C4—H4···N2ii0.93 (3)2.78 (3)3.417 (3)126.99 (18)
C11—H11···N2iii0.97 (2)2.70 (2)3.623 (2)158.83 (19)
C14—H14A···Cg1iv1.02 (2)2.98 (2)3.780 (3)136.3 (2)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+3/2, y, z1/2; (iii) x1/2, y+1/2, z+1; (iv) x, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds