Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C31H33NO4, was synthesized by the reaction of dimedone with 1,3-benzodioxole-5-carbaldehyde and p-toluidine in water. The dihydro­pyridine and both of the cyclo­hexenone rings are not planar and have flattened boat conformations, while the remaining rings are planar. The dihedral angle between the planar rings of the 1,3-benzodioxole system is 1.30 (2)°, so they are nearly coplanar; the angle between the benzene and benzodioxole rings is 9.7 (1)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807038998/hk2306sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807038998/hk2306Isup2.hkl
Contains datablock I

CCDC reference: 662411

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.051
  • wR factor = 0.163
  • Data-to-parameter ratio = 14.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 44 Perc. PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT230_ALERT_2_C Hirshfeld Test Diff for C17 - C18 .. 5.76 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C3 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Acridine derivatives containing 1,4-dihydropyridine unit belong to a special class of compounds not only because of their interesting chemical and physical properties but also due to their immense utility in pharmaceutical and dye industry, and they are well known atherapeutic agents (Wysocka-Skrzela & Ledochowski, 1976; Nasim & Brychey, 1979; Thull & Testa, 1994; Reil et al., 1994; Mandi et al., 1994). We have reported the synthesis of N-hydroxylacridine derivatives, previously, (Tu et al., 2004) and report herein the structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the bond lengths and angles are generally within normal ranges (Allen et al., 1987).

Rings A (O3/O4/C27/C28/C31), B (C25—C30) and C (C14—C19) are, of course, planar and the dihedral angle between rings A and B is A/B = 1.30 (2)°, so they are also nearly co-planar. Rings D (C1—C6), E (N1/C1/C6—C8/C13) and F (C8—C13) are not planar, having total puckering amplitudes, QT, of 0.475 (3), 0.222 (2) and 0.476 (3) Å, respectively, and flattened boat conformations [φ = 131.26 (3)°, θ = 54.78 (3)°; φ = 122.70 (2)°, θ = 73.60 (3)° and φ = 1.73 (3)°, θ = 121.14 (3)°, respectively] (Cremer & Pople, 1975).

As can be seen from the packing diagram (Fig. 2), the molecules of (I) are elongated along the c axis. Dipole-dipole and van der Waals interactions may be effective in the molecular packing.

Related literature top

For general background, see: Wysocka-Skrzela & Ledochowski (1976); Nasim & Brychey (1979); Thull & Testa (1994); Reil et al. (1994); Mandi et al. (1994); Tu et al. (2004); Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of dimedone (0.28 g, 2 mmol) with benzo[d][1,3]dioxole-5-carbaldehyde (0.15 g, 1 mmol) and p-toluidine (0.17 g, 1 mmol) at 403 K under microwave irradiation (maximum power 150 W, initial power 100 W) for 6 min (yield; 0.43 g, 89%, m.p. 536–537 K). Single crystals suitable for X-ray analysis were obtained from an ethanol solution (95%) by slow evaporation.

Refinement top

H atoms were positioned geometrically with C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Structure description top

Acridine derivatives containing 1,4-dihydropyridine unit belong to a special class of compounds not only because of their interesting chemical and physical properties but also due to their immense utility in pharmaceutical and dye industry, and they are well known atherapeutic agents (Wysocka-Skrzela & Ledochowski, 1976; Nasim & Brychey, 1979; Thull & Testa, 1994; Reil et al., 1994; Mandi et al., 1994). We have reported the synthesis of N-hydroxylacridine derivatives, previously, (Tu et al., 2004) and report herein the structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the bond lengths and angles are generally within normal ranges (Allen et al., 1987).

Rings A (O3/O4/C27/C28/C31), B (C25—C30) and C (C14—C19) are, of course, planar and the dihedral angle between rings A and B is A/B = 1.30 (2)°, so they are also nearly co-planar. Rings D (C1—C6), E (N1/C1/C6—C8/C13) and F (C8—C13) are not planar, having total puckering amplitudes, QT, of 0.475 (3), 0.222 (2) and 0.476 (3) Å, respectively, and flattened boat conformations [φ = 131.26 (3)°, θ = 54.78 (3)°; φ = 122.70 (2)°, θ = 73.60 (3)° and φ = 1.73 (3)°, θ = 121.14 (3)°, respectively] (Cremer & Pople, 1975).

As can be seen from the packing diagram (Fig. 2), the molecules of (I) are elongated along the c axis. Dipole-dipole and van der Waals interactions may be effective in the molecular packing.

For general background, see: Wysocka-Skrzela & Ledochowski (1976); Nasim & Brychey (1979); Thull & Testa (1994); Reil et al. (1994); Mandi et al. (1994); Tu et al. (2004); Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I).
9-(1,3-Benzodioxol-5-yl)-3,3,6,6-tetramethyl-10-p-tolyl-3,4,6,7- tetrahydroacridine-1,8(2H,5H,9H,10H)-dione top
Crystal data top
C31H33NO4F(000) = 1032
Mr = 483.58Dx = 1.216 Mg m3
Monoclinic, P21/cMelting point = 536–537 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.344 (3) ÅCell parameters from 1625 reflections
b = 11.074 (2) Åθ = 2.4–20.0°
c = 19.772 (3) ŵ = 0.08 mm1
β = 102.286 (3)°T = 298 K
V = 2640.8 (9) Å3Block, yellow
Z = 40.45 × 0.43 × 0.41 mm
Data collection top
Bruker CCD area-detector
diffractometer
4650 independent reflections
Radiation source: fine-focus sealed tube2042 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.965, Tmax = 0.968k = 1310
13410 measured reflectionsl = 2123
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0478P)2 + 1.2257P]
where P = (Fo2 + 2Fc2)/3
4650 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C31H33NO4V = 2640.8 (9) Å3
Mr = 483.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.344 (3) ŵ = 0.08 mm1
b = 11.074 (2) ÅT = 298 K
c = 19.772 (3) Å0.45 × 0.43 × 0.41 mm
β = 102.286 (3)°
Data collection top
Bruker CCD area-detector
diffractometer
4650 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2042 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.968Rint = 0.065
13410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
4650 reflectionsΔρmin = 0.18 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7022 (2)0.4428 (2)0.13499 (13)0.0414 (7)
O10.5690 (2)0.8299 (2)0.17756 (13)0.0668 (8)
O20.5793 (2)0.6872 (2)0.06130 (12)0.0637 (8)
O30.8218 (2)1.0740 (2)0.04178 (14)0.0713 (8)
O40.9999 (2)1.0020 (3)0.08198 (13)0.0699 (8)
C10.6706 (3)0.5297 (3)0.17899 (16)0.0384 (8)
C20.6709 (3)0.4912 (3)0.25162 (16)0.0503 (10)
H2A0.73520.44060.26820.060*
H2B0.60530.44300.25160.060*
C30.6732 (3)0.5971 (3)0.30138 (17)0.0488 (9)
C40.5838 (3)0.6862 (3)0.26838 (17)0.0539 (10)
H4A0.51170.64870.26430.065*
H4B0.58670.75610.29830.065*
C50.5963 (3)0.7270 (3)0.19842 (18)0.0452 (9)
C60.6389 (3)0.6409 (3)0.15455 (16)0.0383 (8)
C70.6459 (3)0.6822 (3)0.08302 (16)0.0413 (9)
H70.57800.72710.06350.050*
C80.6505 (3)0.5736 (3)0.03775 (16)0.0390 (8)
C90.6207 (3)0.5911 (3)0.03669 (18)0.0480 (9)
C100.6382 (3)0.4893 (3)0.08332 (17)0.0555 (10)
H10A0.65860.52310.12410.067*
H10B0.56850.44690.09840.067*
C110.7264 (3)0.3986 (3)0.05075 (17)0.0488 (9)
C120.7002 (3)0.3592 (3)0.01839 (16)0.0490 (10)
H12A0.63360.31020.00930.059*
H12B0.76050.30950.04310.059*
C130.6836 (3)0.4639 (3)0.06375 (17)0.0402 (8)
C140.7402 (3)0.3254 (3)0.16314 (16)0.0392 (8)
C150.6674 (3)0.2303 (3)0.15984 (17)0.0451 (9)
H150.59320.24030.13860.054*
C160.7049 (3)0.1200 (3)0.18810 (18)0.0536 (10)
H160.65520.05610.18520.064*
C170.8131 (4)0.1026 (4)0.22012 (18)0.0551 (11)
C180.8859 (3)0.1980 (4)0.22254 (19)0.0655 (12)
H180.96010.18740.24370.079*
C190.8505 (3)0.3091 (4)0.19402 (18)0.0542 (10)
H190.90060.37230.19570.065*
C200.8529 (4)0.0184 (4)0.2516 (2)0.0914 (16)
H20A0.80800.04250.28340.137*
H20B0.92880.01170.27570.137*
H20C0.84700.07760.21550.137*
C210.6505 (4)0.5493 (3)0.36970 (18)0.0774 (14)
H21A0.70690.49220.38950.116*
H21B0.57930.51040.36120.116*
H21C0.65090.61530.40120.116*
C220.7864 (3)0.6590 (4)0.3155 (2)0.0779 (13)
H22A0.78630.72520.34680.117*
H22B0.80140.68860.27280.117*
H22C0.84260.60200.33570.117*
C230.7232 (3)0.2880 (4)0.09762 (18)0.0687 (12)
H23A0.77750.23030.07570.103*
H23B0.73920.31230.14110.103*
H23C0.65080.25200.10550.103*
C240.8414 (3)0.4561 (4)0.0385 (2)0.0699 (12)
H24A0.84330.52580.00930.105*
H24B0.85740.48000.08200.105*
H24C0.89590.39870.01630.105*
C250.7441 (3)0.7655 (3)0.08364 (16)0.0401 (9)
C260.7270 (3)0.8843 (3)0.06044 (16)0.0443 (9)
H260.65580.91440.04450.053*
C270.8177 (3)0.9550 (3)0.06181 (17)0.0474 (9)
C280.9232 (3)0.9124 (4)0.08529 (18)0.0486 (10)
C290.9437 (3)0.7974 (4)0.10848 (18)0.0541 (10)
H291.01540.76910.12460.065*
C300.8513 (3)0.7243 (3)0.10683 (18)0.0503 (10)
H300.86220.64470.12190.060*
C310.9356 (4)1.1062 (4)0.0568 (2)0.0729 (13)
H31A0.94881.16960.09140.087*
H31B0.95661.13610.01530.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0571 (19)0.0329 (18)0.0359 (17)0.0049 (14)0.0135 (14)0.0042 (13)
O10.085 (2)0.0431 (18)0.0772 (19)0.0212 (15)0.0280 (16)0.0116 (14)
O20.0771 (19)0.0545 (18)0.0542 (17)0.0051 (15)0.0020 (14)0.0155 (14)
O30.081 (2)0.0406 (17)0.093 (2)0.0135 (15)0.0198 (17)0.0097 (15)
O40.0692 (19)0.061 (2)0.080 (2)0.0239 (17)0.0171 (15)0.0025 (15)
C10.045 (2)0.032 (2)0.040 (2)0.0010 (17)0.0122 (17)0.0021 (16)
C20.073 (3)0.039 (2)0.042 (2)0.0074 (19)0.021 (2)0.0046 (17)
C30.068 (3)0.036 (2)0.043 (2)0.004 (2)0.0111 (19)0.0001 (17)
C40.066 (3)0.051 (3)0.049 (2)0.008 (2)0.022 (2)0.0032 (19)
C50.043 (2)0.041 (2)0.053 (2)0.0018 (18)0.0128 (18)0.0017 (19)
C60.040 (2)0.035 (2)0.042 (2)0.0031 (16)0.0123 (16)0.0015 (16)
C70.041 (2)0.039 (2)0.043 (2)0.0034 (17)0.0088 (17)0.0061 (17)
C80.042 (2)0.037 (2)0.038 (2)0.0010 (17)0.0075 (16)0.0043 (16)
C90.049 (2)0.047 (2)0.047 (2)0.0054 (19)0.0072 (18)0.0058 (19)
C100.064 (3)0.059 (3)0.043 (2)0.005 (2)0.0090 (19)0.0058 (19)
C110.056 (2)0.052 (2)0.040 (2)0.003 (2)0.0127 (18)0.0005 (18)
C120.063 (3)0.044 (2)0.041 (2)0.0014 (19)0.0144 (19)0.0001 (17)
C130.044 (2)0.040 (2)0.038 (2)0.0028 (17)0.0110 (17)0.0015 (17)
C140.047 (2)0.034 (2)0.037 (2)0.0069 (18)0.0098 (18)0.0021 (16)
C150.049 (2)0.039 (2)0.048 (2)0.0010 (18)0.0118 (18)0.0054 (17)
C160.068 (3)0.041 (2)0.055 (2)0.004 (2)0.019 (2)0.0076 (19)
C170.077 (3)0.048 (3)0.042 (2)0.022 (2)0.016 (2)0.0038 (19)
C180.060 (3)0.080 (3)0.050 (3)0.030 (3)0.005 (2)0.000 (2)
C190.051 (3)0.055 (3)0.055 (2)0.001 (2)0.008 (2)0.003 (2)
C200.137 (4)0.068 (3)0.067 (3)0.055 (3)0.018 (3)0.017 (2)
C210.141 (4)0.051 (3)0.044 (2)0.007 (3)0.029 (3)0.003 (2)
C220.082 (3)0.061 (3)0.077 (3)0.002 (2)0.012 (3)0.005 (2)
C230.095 (3)0.065 (3)0.048 (2)0.001 (3)0.019 (2)0.002 (2)
C240.061 (3)0.082 (3)0.071 (3)0.010 (2)0.025 (2)0.009 (2)
C250.046 (2)0.036 (2)0.038 (2)0.0022 (17)0.0087 (17)0.0043 (16)
C260.048 (2)0.038 (2)0.045 (2)0.0003 (18)0.0069 (18)0.0083 (17)
C270.062 (3)0.035 (2)0.047 (2)0.004 (2)0.017 (2)0.0045 (17)
C280.056 (3)0.048 (3)0.045 (2)0.013 (2)0.0188 (19)0.0056 (18)
C290.044 (2)0.060 (3)0.058 (2)0.002 (2)0.0090 (19)0.005 (2)
C300.050 (2)0.042 (2)0.059 (2)0.003 (2)0.013 (2)0.0099 (18)
C310.098 (4)0.052 (3)0.080 (3)0.021 (3)0.044 (3)0.010 (2)
Geometric parameters (Å, º) top
N1—C131.398 (4)C14—C151.376 (4)
N1—C11.407 (4)C14—C191.381 (4)
N1—C141.453 (4)C15—C161.382 (4)
O1—C51.233 (4)C15—H150.9300
O2—C91.234 (4)C16—C171.364 (5)
O3—C271.380 (4)C16—H160.9300
O3—C311.417 (5)C17—C181.381 (5)
O4—C281.382 (4)C17—C201.514 (5)
O4—C311.429 (5)C18—C191.385 (5)
C1—C61.350 (4)C18—H180.9300
C1—C21.497 (4)C19—H190.9300
C2—C31.527 (4)C20—H20A0.9600
C2—H2A0.9700C20—H20B0.9600
C2—H2B0.9700C20—H20C0.9600
C3—C41.520 (5)C21—H21A0.9600
C3—C221.528 (5)C21—H21B0.9600
C3—C211.531 (5)C21—H21C0.9600
C4—C51.494 (4)C22—H22A0.9600
C4—H4A0.9700C22—H22B0.9600
C4—H4B0.9700C22—H22C0.9600
C5—C61.460 (4)C23—H23A0.9600
C6—C71.506 (4)C23—H23B0.9600
C7—C81.508 (4)C23—H23C0.9600
C7—C251.521 (4)C24—H24A0.9600
C7—H70.9800C24—H24B0.9600
C8—C131.348 (4)C24—H24C0.9600
C8—C91.452 (4)C25—C301.384 (4)
C9—C101.501 (5)C25—C261.394 (4)
C10—C111.521 (5)C26—C271.362 (4)
C10—H10A0.9700C26—H260.9300
C10—H10B0.9700C27—C281.370 (5)
C11—C241.527 (5)C28—C291.359 (5)
C11—C231.531 (5)C29—C301.393 (4)
C11—C121.533 (4)C29—H290.9300
C12—C131.506 (4)C30—H300.9300
C12—H12A0.9700C31—H31A0.9700
C12—H12B0.9700C31—H31B0.9700
C13—N1—C1120.1 (3)C14—C15—H15120.0
C13—N1—C14120.4 (3)C16—C15—H15120.0
C1—N1—C14119.0 (3)C17—C16—C15121.5 (4)
C27—O3—C31106.0 (3)C17—C16—H16119.2
C28—O4—C31105.1 (3)C15—C16—H16119.2
C6—C1—N1120.0 (3)C16—C17—C18118.3 (4)
C6—C1—C2123.0 (3)C16—C17—C20121.0 (4)
N1—C1—C2117.0 (3)C18—C17—C20120.7 (4)
C1—C2—C3113.3 (3)C17—C18—C19121.2 (4)
C1—C2—H2A108.9C17—C18—H18119.4
C3—C2—H2A108.9C19—C18—H18119.4
C1—C2—H2B108.9C14—C19—C18119.5 (4)
C3—C2—H2B108.9C14—C19—H19120.3
H2A—C2—H2B107.7C18—C19—H19120.3
C4—C3—C2108.1 (3)C17—C20—H20A109.5
C4—C3—C22109.8 (3)C17—C20—H20B109.5
C2—C3—C22110.6 (3)H20A—C20—H20B109.5
C4—C3—C21110.5 (3)C17—C20—H20C109.5
C2—C3—C21108.7 (3)H20A—C20—H20C109.5
C22—C3—C21109.1 (3)H20B—C20—H20C109.5
C5—C4—C3112.7 (3)C3—C21—H21A109.5
C5—C4—H4A109.1C3—C21—H21B109.5
C3—C4—H4A109.1H21A—C21—H21B109.5
C5—C4—H4B109.1C3—C21—H21C109.5
C3—C4—H4B109.1H21A—C21—H21C109.5
H4A—C4—H4B107.8H21B—C21—H21C109.5
O1—C5—C6120.8 (3)C3—C22—H22A109.5
O1—C5—C4120.9 (3)C3—C22—H22B109.5
C6—C5—C4118.3 (3)H22A—C22—H22B109.5
C1—C6—C5119.8 (3)C3—C22—H22C109.5
C1—C6—C7122.9 (3)H22A—C22—H22C109.5
C5—C6—C7117.3 (3)H22B—C22—H22C109.5
C6—C7—C8109.4 (3)C11—C23—H23A109.5
C6—C7—C25112.4 (3)C11—C23—H23B109.5
C8—C7—C25111.0 (3)H23A—C23—H23B109.5
C6—C7—H7108.0C11—C23—H23C109.5
C8—C7—H7108.0H23A—C23—H23C109.5
C25—C7—H7108.0H23B—C23—H23C109.5
C13—C8—C9119.8 (3)C11—C24—H24A109.5
C13—C8—C7122.6 (3)C11—C24—H24B109.5
C9—C8—C7117.5 (3)H24A—C24—H24B109.5
O2—C9—C8120.6 (3)C11—C24—H24C109.5
O2—C9—C10120.4 (3)H24A—C24—H24C109.5
C8—C9—C10118.9 (3)H24B—C24—H24C109.5
C9—C10—C11114.8 (3)C30—C25—C26119.2 (3)
C9—C10—H10A108.6C30—C25—C7120.5 (3)
C11—C10—H10A108.6C26—C25—C7120.3 (3)
C9—C10—H10B108.6C27—C26—C25118.0 (3)
C11—C10—H10B108.6C27—C26—H26121.0
H10A—C10—H10B107.5C25—C26—H26121.0
C10—C11—C24110.4 (3)C26—C27—C28121.8 (3)
C10—C11—C23110.4 (3)C26—C27—O3128.5 (4)
C24—C11—C23109.5 (3)C28—C27—O3109.6 (3)
C10—C11—C12107.3 (3)C29—C28—C27122.1 (3)
C24—C11—C12110.0 (3)C29—C28—O4127.5 (4)
C23—C11—C12109.2 (3)C27—C28—O4110.4 (3)
C13—C12—C11113.2 (3)C28—C29—C30116.4 (3)
C13—C12—H12A108.9C28—C29—H29121.8
C11—C12—H12A108.9C30—C29—H29121.8
C13—C12—H12B108.9C25—C30—C29122.4 (3)
C11—C12—H12B108.9C25—C30—H30118.8
H12A—C12—H12B107.8C29—C30—H30118.8
C8—C13—N1120.4 (3)O3—C31—O4108.8 (3)
C8—C13—C12122.4 (3)O3—C31—H31A109.9
N1—C13—C12117.2 (3)O4—C31—H31A109.9
C15—C14—C19119.6 (3)O3—C31—H31B109.9
C15—C14—N1120.8 (3)O4—C31—H31B109.9
C19—C14—N1119.6 (3)H31A—C31—H31B108.3
C14—C15—C16119.9 (3)
C13—N1—C1—C610.5 (5)C7—C8—C13—C12173.0 (3)
C14—N1—C1—C6177.6 (3)C1—N1—C13—C89.5 (5)
C13—N1—C1—C2167.6 (3)C14—N1—C13—C8178.7 (3)
C14—N1—C1—C24.3 (4)C1—N1—C13—C12169.3 (3)
C6—C1—C2—C320.7 (5)C14—N1—C13—C122.4 (4)
N1—C1—C2—C3161.2 (3)C11—C12—C13—C825.4 (5)
C1—C2—C3—C449.0 (4)C11—C12—C13—N1155.8 (3)
C1—C2—C3—C2271.2 (4)C13—N1—C14—C1578.8 (4)
C1—C2—C3—C21169.0 (3)C1—N1—C14—C1593.1 (4)
C2—C3—C4—C555.9 (4)C13—N1—C14—C19101.7 (4)
C22—C3—C4—C564.9 (4)C1—N1—C14—C1986.5 (4)
C21—C3—C4—C5174.7 (3)C19—C14—C15—C160.8 (5)
C3—C4—C5—O1147.4 (3)N1—C14—C15—C16178.8 (3)
C3—C4—C5—C634.3 (4)C14—C15—C16—C170.6 (5)
N1—C1—C6—C5174.2 (3)C15—C16—C17—C181.4 (5)
C2—C1—C6—C53.8 (5)C15—C16—C17—C20179.3 (3)
N1—C1—C6—C76.2 (5)C16—C17—C18—C190.7 (6)
C2—C1—C6—C7175.8 (3)C20—C17—C18—C19179.9 (3)
O1—C5—C6—C1178.5 (3)C15—C14—C19—C181.3 (5)
C4—C5—C6—C13.1 (5)N1—C14—C19—C18178.2 (3)
O1—C5—C6—C71.1 (5)C17—C18—C19—C140.6 (6)
C4—C5—C6—C7177.3 (3)C6—C7—C25—C3062.9 (4)
C1—C6—C7—C820.9 (4)C8—C7—C25—C3060.0 (4)
C5—C6—C7—C8159.5 (3)C6—C7—C25—C26117.5 (3)
C1—C6—C7—C25102.9 (4)C8—C7—C25—C26119.7 (3)
C5—C6—C7—C2576.7 (4)C30—C25—C26—C270.1 (5)
C6—C7—C8—C1321.9 (4)C7—C25—C26—C27179.7 (3)
C25—C7—C8—C13102.7 (4)C25—C26—C27—C280.2 (5)
C6—C7—C8—C9160.0 (3)C25—C26—C27—O3180.0 (3)
C25—C7—C8—C975.4 (4)C31—O3—C27—C26177.2 (4)
C13—C8—C9—O2172.4 (3)C31—O3—C27—C282.6 (4)
C7—C8—C9—O29.5 (5)C26—C27—C28—C290.1 (5)
C13—C8—C9—C105.9 (5)O3—C27—C28—C29179.9 (3)
C7—C8—C9—C10172.2 (3)C26—C27—C28—O4179.4 (3)
O2—C9—C10—C11157.5 (3)O3—C27—C28—O40.4 (4)
C8—C9—C10—C1124.2 (5)C31—O4—C28—C29177.6 (4)
C9—C10—C11—C2468.8 (4)C31—O4—C28—C271.9 (4)
C9—C10—C11—C23170.0 (3)C27—C28—C29—C300.3 (5)
C9—C10—C11—C1251.1 (4)O4—C28—C29—C30179.7 (3)
C10—C11—C12—C1351.2 (4)C26—C25—C30—C290.5 (5)
C24—C11—C12—C1368.9 (4)C7—C25—C30—C29179.8 (3)
C23—C11—C12—C13170.9 (3)C28—C29—C30—C250.6 (5)
C9—C8—C13—N1173.8 (3)C27—O3—C31—O43.7 (4)
C7—C8—C13—N18.2 (5)C28—O4—C31—O33.5 (4)
C9—C8—C13—C125.0 (5)

Experimental details

Crystal data
Chemical formulaC31H33NO4
Mr483.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.344 (3), 11.074 (2), 19.772 (3)
β (°) 102.286 (3)
V3)2640.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.43 × 0.41
Data collection
DiffractometerBruker CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.965, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
13410, 4650, 2042
Rint0.065
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.163, 1.01
No. of reflections4650
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.18

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds