Download citation
Download citation
link to html
In the mol­ecule of the title compound, [Cu(C12H8N2)2(C2H4N2O4)](NO3)2·2H2O, the Cu atom has a distorted octa­hedral coordination formed by six N atoms from one dihydroxy­glyoxime and two 1,10-phenanthroline ligands. In the crystal structure, mol­ecules are linked into a three-dimensional framework by O—H...O and C—H...O hydrogen bonds and by π–π stacking inter­actions, with a centroid–centroid distance of 3.5692 (5) Å (symmetry code: 1 − x, 2 − y, 1 − z).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807028255/hk2273sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807028255/hk2273Isup2.hkl
Contains datablock I

CCDC reference: 1148885

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.045
  • wR factor = 0.167
  • Data-to-parameter ratio = 13.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for O3 - C25 .. 7.22 su PLAT420_ALERT_2_B D-H Without Acceptor O3 - H3A ... ? PLAT420_ALERT_2_B D-H Without Acceptor O4 - H4A ... ? PLAT420_ALERT_2_B D-H Without Acceptor O11 - H11B ... ? PLAT420_ALERT_2_B D-H Without Acceptor O12 - H12A ... ? PLAT420_ALERT_2_B D-H Without Acceptor O12 - H12B ... ?
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 2.76 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.90 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for O4 - C26 .. 6.77 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C17 - C18 .. 5.25 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C25 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C26 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for N7 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for N8 PLAT245_ALERT_2_C U(iso) H11B Smaller than U(eq) O11 by ... 0.05 AngSq PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8 PLAT415_ALERT_2_C Short Inter D-H..H-X H2A .. H18 .. 2.13 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (3) 3.79 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 12
0 ALERT level A = In general: serious problem 6 ALERT level B = Potentially serious problem 12 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 13 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

In recent years, interest in the chemistry of metal-oxygen clusters has grown because of their applications in areas including catalysis, materials chemistry and biochemistry (Pope, 1983; Pope & Müller, 2001). π-π Stacking between aromatic rings is related to the electron-transfer process in some biological systems (Deisenhofer & Michel, 1989; Wall et al., 1999). Aromatic polycyclic compounds, such as phenanthroline, quinoline and benzimidazole, have commonly shown π-π stacking in metal complexes (Wu et al., 2003; Pan & Xu, 2004; Liu et al., 2004; Li et al., 2005). As a bidentate flexible ligand, dihydroxyglyoxime is also a good ligand with excellent coordination capabilities for generating mono-, bi- or trinuclear complexes, which are commonly used as precursors for the formation of supramolecular architectures (Chaudhuri et al., 1991; Cervera et al., 1997). We report here the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The six N atoms of one dihydroxyglyoxime and two 1,10-phenanthroline (phen) ligands are coordinated to the Cu atom, in a distorted octahedral arrangement (Table 1). The dihydroxyglyoxime and two phen ligands are each planar, and the phen ligands are nearly perpendicular to each other, with a dihedral angle of 87.21 (5)°.

In the crystal structure, there is a three-dimensional framework (Fig. 2) formed by O—H···O and C—H···O hydrogen bonds (Table 2). There are π-π stacking interactions between adjacent phen ligands with a centroid-centroid distance of 3.543 (2) Å (symmetry code: 1 - x, 2 - y, 1 - z). These π-π stacking interactions and hydrogen bonds lead to a supramolecular network structure (Fig. 2).

Related literature top

For general background, see: Pope (1983); Pope & Müller (2001); Deisenhofer & Michel (1989); Wall et al. (1999); Allen et al. (1987). For related literature, see: Wu et al. (2003); Pan & Xu (2004); Liu et al. (2004); Li et al. (2005); Chaudhuri et al. (1991); Cervera et al. (1997).

Experimental top

Copper(II) dinitrate hexahydrate (296 mg, 1 mmol), phen (396 mg, 2 mmol) and dihydroxyglyoxime (120 mg, 1 mmol) were dissolved in ethanol (20 ml). The mixture was heated for 5 h under reflux with stirring. It was then filtered to give a clear solution, into which diethyl ether vapour was allowed to condense in a closed vessel. After being allowed to stand for a few days at room temperature, some blue single crystals suitable for X-ray diffraction analysis precipitated.

Refinement top

H atoms of the water molecules were located in a difference synthesis and refined isotropically [O—H = 0.84 (3)–0.86 (9) Å, Uiso(H) = 0.450 (8)–0.59 (5) Å2]. The remaining H atoms were positioned geometrically, with O—H = 0.82 Å (for OH) and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H atoms and x = 1.5 for OH H atoms.

Structure description top

In recent years, interest in the chemistry of metal-oxygen clusters has grown because of their applications in areas including catalysis, materials chemistry and biochemistry (Pope, 1983; Pope & Müller, 2001). π-π Stacking between aromatic rings is related to the electron-transfer process in some biological systems (Deisenhofer & Michel, 1989; Wall et al., 1999). Aromatic polycyclic compounds, such as phenanthroline, quinoline and benzimidazole, have commonly shown π-π stacking in metal complexes (Wu et al., 2003; Pan & Xu, 2004; Liu et al., 2004; Li et al., 2005). As a bidentate flexible ligand, dihydroxyglyoxime is also a good ligand with excellent coordination capabilities for generating mono-, bi- or trinuclear complexes, which are commonly used as precursors for the formation of supramolecular architectures (Chaudhuri et al., 1991; Cervera et al., 1997). We report here the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The six N atoms of one dihydroxyglyoxime and two 1,10-phenanthroline (phen) ligands are coordinated to the Cu atom, in a distorted octahedral arrangement (Table 1). The dihydroxyglyoxime and two phen ligands are each planar, and the phen ligands are nearly perpendicular to each other, with a dihedral angle of 87.21 (5)°.

In the crystal structure, there is a three-dimensional framework (Fig. 2) formed by O—H···O and C—H···O hydrogen bonds (Table 2). There are π-π stacking interactions between adjacent phen ligands with a centroid-centroid distance of 3.543 (2) Å (symmetry code: 1 - x, 2 - y, 1 - z). These π-π stacking interactions and hydrogen bonds lead to a supramolecular network structure (Fig. 2).

For general background, see: Pope (1983); Pope & Müller (2001); Deisenhofer & Michel (1989); Wall et al. (1999); Allen et al. (1987). For related literature, see: Wu et al. (2003); Pan & Xu (2004); Liu et al. (2004); Li et al. (2005); Chaudhuri et al. (1991); Cervera et al. (1997).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of the cationic complex of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Solvent molecules and nitrate anions have been omitted for clarity.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
(Dihydroxyglyoxime-κ2N,N')bis(1,10-phenanthroline-κ2N,N')copper(II) dinitrate dihydrate top
Crystal data top
[Cu(C12H8N2)2(C2H4N2O4)](NO3)2·2H2OF(000) = 1444
Mr = 704.07Dx = 1.534 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5663 reflections
a = 13.9108 (7) Åθ = 2.2–24.9°
b = 12.011 (3) ŵ = 0.79 mm1
c = 18.338 (4) ÅT = 273 K
β = 95.897 (5)°Prism, blue
V = 3047.8 (10) Å30.30 × 0.23 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
6028 independent reflections
Radiation source: fine-focus sealed tube3118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.798, Tmax = 0.871k = 1515
19706 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0966P)2]
where P = (Fo2 + 2Fc2)/3
6028 reflections(Δ/σ)max = 0.005
444 parametersΔρmax = 0.79 e Å3
12 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Cu(C12H8N2)2(C2H4N2O4)](NO3)2·2H2OV = 3047.8 (10) Å3
Mr = 704.07Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9108 (7) ŵ = 0.79 mm1
b = 12.011 (3) ÅT = 273 K
c = 18.338 (4) Å0.30 × 0.23 × 0.18 mm
β = 95.897 (5)°
Data collection top
Bruker APEXII area-detector
diffractometer
6028 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3118 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.871Rint = 0.041
19706 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04512 restraints
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.79 e Å3
6028 reflectionsΔρmin = 0.61 e Å3
444 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.77579 (4)0.75553 (5)0.03828 (3)0.0432 (2)
O10.7961 (3)0.9961 (3)0.04774 (18)0.0483 (9)
H1A0.80000.99540.00340.072*
O20.8338 (3)0.6031 (3)0.1481 (2)0.0563 (10)
H2A0.87120.59210.18500.085*
O30.9324 (4)0.7551 (5)0.2458 (3)0.1201 (19)
H3A0.99080.75450.24310.180*
O40.9039 (5)0.9954 (5)0.1835 (4)0.133 (2)
H4A0.95200.97960.21110.199*
O50.7739 (3)0.1302 (3)0.9096 (3)0.0814 (13)
O60.8930 (3)0.0159 (3)0.9283 (2)0.0641 (11)
O70.8887 (4)0.1343 (4)0.8437 (3)0.116 (2)
O80.7394 (6)0.8785 (7)0.2880 (4)0.166 (3)
O90.6158 (7)0.8835 (7)0.3358 (5)0.184 (3)
O100.6387 (9)1.0077 (7)0.2627 (6)0.345 (11)
O110.5584 (13)0.4277 (14)0.1452 (12)0.497 (14)
O120.701 (2)0.340 (2)0.2000 (12)0.59 (2)
N10.6533 (3)0.7801 (3)0.0767 (2)0.0376 (9)
N20.7067 (3)0.8187 (3)0.0534 (2)0.0355 (9)
N30.7384 (3)0.6056 (3)0.0042 (2)0.0396 (9)
N40.8936 (2)0.7245 (3)0.0073 (2)0.0343 (9)
N50.8376 (3)0.7047 (3)0.1298 (2)0.0391 (9)
N60.8219 (2)0.8937 (3)0.0767 (2)0.0350 (9)
N70.8515 (3)0.0921 (4)0.8922 (3)0.0569 (12)
N80.6658 (6)0.9287 (9)0.2899 (5)0.130 (4)
C10.6305 (4)0.7620 (4)0.1432 (3)0.0491 (13)
H10.67780.73680.17890.059*
C20.5357 (4)0.7800 (5)0.1620 (3)0.0604 (15)
H20.52130.76580.20950.072*
C30.4666 (4)0.8173 (4)0.1120 (3)0.0557 (15)
H30.40440.82910.12480.067*
C40.4874 (3)0.8387 (4)0.0409 (3)0.0461 (13)
C50.4204 (4)0.8802 (4)0.0169 (4)0.0583 (15)
H50.35660.89240.00810.070*
C60.4477 (4)0.9023 (4)0.0846 (4)0.0615 (16)
H60.40250.92980.12110.074*
C70.5462 (4)0.8834 (4)0.1004 (3)0.0497 (13)
C80.5808 (4)0.9063 (4)0.1659 (3)0.0594 (15)
H80.53980.93560.20440.071*
C90.6761 (5)0.8862 (4)0.1748 (3)0.0598 (15)
H90.70010.90300.21900.072*
C100.7367 (4)0.8403 (4)0.1171 (3)0.0464 (13)
H100.80060.82470.12420.056*
C110.6124 (3)0.8403 (3)0.0443 (3)0.0398 (12)
C120.5832 (3)0.8180 (3)0.0253 (3)0.0371 (11)
C130.6609 (4)0.5462 (4)0.0146 (3)0.0554 (14)
H130.61470.57610.04220.066*
C140.6468 (4)0.4405 (5)0.0147 (4)0.0681 (18)
H140.59130.40080.00690.082*
C150.7131 (4)0.3945 (4)0.0545 (3)0.0674 (17)
H150.70340.32350.07410.081*
C160.7968 (4)0.4544 (4)0.0662 (3)0.0447 (12)
C170.8721 (4)0.4155 (4)0.1062 (3)0.0511 (14)
H170.86550.34680.12960.061*
C180.9512 (4)0.4742 (4)0.1111 (3)0.0533 (14)
H180.99970.44470.13660.064*
C190.9650 (3)0.5830 (4)0.0780 (3)0.0415 (12)
C201.0481 (4)0.6512 (4)0.0796 (3)0.0487 (13)
H201.10030.62730.10340.058*
C211.0500 (3)0.7503 (4)0.0464 (3)0.0479 (12)
H211.10400.79570.04740.057*
C220.9725 (3)0.7865 (4)0.0103 (3)0.0429 (12)
H220.97580.85600.01220.051*
C230.8906 (3)0.6243 (4)0.0405 (2)0.0367 (11)
C240.8064 (3)0.5595 (4)0.0348 (2)0.0367 (11)
C250.8804 (3)0.7815 (4)0.1715 (3)0.0401 (11)
C260.8672 (3)0.8918 (4)0.1413 (3)0.0430 (12)
H11A0.514 (4)0.400 (3)0.116 (3)0.500 (16)*
H12A0.673 (10)0.286 (4)0.220 (6)0.59 (5)*
H11B0.557 (2)0.4964 (15)0.1531 (19)0.450 (8)*
H12B0.729 (3)0.317 (3)0.1644 (18)0.587 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0397 (4)0.0421 (4)0.0469 (4)0.0020 (3)0.0012 (3)0.0024 (3)
O10.060 (2)0.0367 (18)0.047 (2)0.0085 (15)0.0012 (18)0.0016 (16)
O20.059 (2)0.050 (2)0.057 (3)0.0037 (17)0.0072 (18)0.0168 (18)
O30.106 (4)0.149 (5)0.097 (4)0.000 (4)0.027 (3)0.018 (3)
O40.148 (6)0.112 (4)0.133 (6)0.017 (4)0.010 (4)0.042 (4)
O50.059 (3)0.079 (3)0.107 (4)0.012 (2)0.016 (3)0.008 (3)
O60.064 (2)0.051 (2)0.076 (3)0.0083 (19)0.004 (2)0.014 (2)
O70.117 (4)0.116 (4)0.124 (5)0.031 (3)0.054 (4)0.053 (4)
O80.149 (6)0.189 (8)0.158 (7)0.025 (6)0.007 (6)0.034 (5)
O90.222 (10)0.186 (8)0.142 (7)0.006 (7)0.009 (6)0.017 (6)
O100.49 (2)0.122 (7)0.349 (15)0.081 (8)0.327 (14)0.109 (8)
O110.46 (3)0.62 (3)0.47 (3)0.05 (3)0.35 (3)0.10 (3)
O120.48 (3)0.94 (6)0.34 (3)0.12 (3)0.01 (2)0.40 (3)
N10.037 (2)0.034 (2)0.042 (3)0.0023 (16)0.0026 (18)0.0003 (18)
N20.040 (2)0.030 (2)0.035 (3)0.0036 (16)0.0011 (18)0.0033 (18)
N30.035 (2)0.034 (2)0.049 (3)0.0009 (17)0.0014 (19)0.0016 (19)
N40.031 (2)0.031 (2)0.040 (2)0.0034 (15)0.0023 (16)0.0020 (17)
N50.035 (2)0.040 (2)0.042 (3)0.0049 (18)0.0047 (18)0.006 (2)
N60.034 (2)0.031 (2)0.040 (3)0.0020 (16)0.0013 (18)0.0020 (18)
N70.051 (3)0.054 (3)0.067 (4)0.007 (2)0.011 (3)0.009 (3)
N80.084 (6)0.195 (11)0.108 (7)0.026 (6)0.003 (5)0.081 (8)
C10.043 (3)0.058 (3)0.046 (3)0.008 (2)0.005 (2)0.006 (3)
C20.053 (3)0.070 (4)0.060 (4)0.001 (3)0.016 (3)0.002 (3)
C30.037 (3)0.056 (3)0.077 (5)0.002 (2)0.016 (3)0.016 (3)
C40.037 (3)0.032 (3)0.068 (4)0.002 (2)0.002 (3)0.009 (3)
C50.036 (3)0.050 (3)0.087 (5)0.004 (2)0.003 (3)0.006 (3)
C60.051 (3)0.045 (3)0.084 (5)0.010 (3)0.020 (3)0.007 (3)
C70.053 (3)0.038 (3)0.054 (4)0.001 (2)0.014 (3)0.006 (3)
C80.075 (4)0.048 (3)0.050 (4)0.011 (3)0.016 (3)0.001 (3)
C90.092 (5)0.045 (3)0.040 (4)0.003 (3)0.004 (3)0.001 (3)
C100.060 (3)0.041 (3)0.038 (3)0.004 (2)0.003 (3)0.005 (2)
C110.043 (3)0.027 (2)0.047 (3)0.002 (2)0.009 (2)0.001 (2)
C120.034 (3)0.030 (2)0.047 (3)0.0008 (19)0.000 (2)0.005 (2)
C130.043 (3)0.045 (3)0.079 (4)0.004 (2)0.008 (3)0.005 (3)
C140.053 (4)0.045 (3)0.107 (5)0.013 (3)0.007 (3)0.011 (3)
C150.070 (4)0.035 (3)0.093 (5)0.009 (3)0.008 (4)0.012 (3)
C160.052 (3)0.033 (3)0.046 (3)0.006 (2)0.010 (2)0.001 (2)
C170.072 (4)0.037 (3)0.042 (3)0.009 (3)0.003 (3)0.007 (2)
C180.075 (4)0.051 (3)0.033 (3)0.031 (3)0.001 (3)0.006 (3)
C190.046 (3)0.047 (3)0.031 (3)0.013 (2)0.002 (2)0.004 (2)
C200.043 (3)0.063 (4)0.041 (3)0.013 (3)0.008 (2)0.005 (3)
C210.037 (3)0.060 (3)0.047 (3)0.003 (3)0.004 (2)0.003 (3)
C220.042 (3)0.039 (3)0.047 (3)0.003 (2)0.000 (2)0.003 (2)
C230.038 (3)0.038 (3)0.033 (3)0.007 (2)0.005 (2)0.002 (2)
C240.042 (3)0.032 (2)0.034 (3)0.005 (2)0.004 (2)0.000 (2)
C250.039 (3)0.049 (3)0.032 (3)0.002 (2)0.001 (2)0.002 (2)
C260.042 (3)0.043 (3)0.043 (3)0.002 (2)0.005 (2)0.013 (2)
Geometric parameters (Å, º) top
Cu1—N11.933 (4)C3—C41.388 (7)
Cu1—N21.999 (4)C3—H30.9300
Cu1—N31.959 (4)C4—C121.414 (6)
Cu1—N41.950 (3)C4—C51.428 (7)
Cu1—N51.906 (4)C5—C61.361 (8)
Cu1—N61.889 (4)C5—H50.9300
O1—N61.372 (4)C6—C71.448 (7)
O1—H1A0.8200C6—H60.9300
O2—N51.269 (5)C7—C81.365 (7)
O2—H2A0.8200C7—C111.408 (7)
O3—C251.509 (6)C8—C91.374 (7)
O3—H3A0.8200C8—H80.9300
O4—C261.525 (6)C9—C101.397 (7)
O4—H4A0.8200C9—H90.9300
O5—N71.244 (5)C10—H100.9300
O6—N71.237 (5)C11—C121.403 (6)
O7—N71.188 (6)C13—C141.384 (7)
O8—N81.192 (9)C13—H130.9300
O9—N81.268 (9)C14—C151.353 (7)
O10—N81.119 (10)C14—H140.9300
O11—H11A0.84 (5)C15—C161.403 (7)
O11—H11B0.84 (3)C15—H150.9300
O12—H12A0.86 (9)C16—C241.389 (6)
O12—H12B0.84 (4)C16—C171.419 (7)
N1—C11.309 (6)C17—C181.317 (7)
N1—C121.363 (6)C17—H170.9300
N2—C101.305 (6)C18—C191.445 (7)
N2—C111.365 (5)C18—H180.9300
N3—C131.323 (6)C19—C231.391 (6)
N3—C241.360 (5)C19—C201.419 (7)
N4—C221.332 (6)C20—C211.336 (6)
N4—C231.348 (5)C20—H200.9300
N5—C251.302 (6)C21—C221.392 (6)
N6—C261.284 (6)C21—H210.9300
C1—C21.414 (7)C22—H220.9300
C1—H10.9300C23—C241.419 (6)
C2—C31.336 (8)C25—C261.440 (6)
C2—H20.9300
N1—Cu1—N283.30 (16)C7—C6—H6119.6
N1—Cu1—N392.39 (15)C8—C7—C11117.0 (5)
N1—Cu1—N4175.33 (15)C8—C7—C6124.8 (5)
N1—Cu1—N593.57 (16)C11—C7—C6118.2 (5)
N1—Cu1—N690.45 (15)C7—C8—C9120.0 (5)
N2—Cu1—N389.54 (15)C7—C8—H8120.0
N2—Cu1—N493.71 (15)C9—C8—H8120.0
N2—Cu1—N5175.49 (15)C8—C9—C10119.6 (5)
N2—Cu1—N695.51 (15)C8—C9—H9120.2
N3—Cu1—N483.97 (15)C10—C9—H9120.2
N3—Cu1—N593.86 (17)N2—C10—C9122.1 (5)
N3—Cu1—N6174.47 (16)N2—C10—H10118.9
N4—Cu1—N589.60 (15)C9—C10—H10118.9
N4—Cu1—N693.42 (15)N2—C11—C12116.5 (4)
N5—Cu1—N681.23 (17)N2—C11—C7123.0 (5)
N6—O1—H1A109.5C12—C11—C7120.5 (5)
N5—O2—H2A109.5N1—C12—C11116.1 (4)
C25—O3—H3A109.5N1—C12—C4122.7 (5)
C26—O4—H4A109.5C11—C12—C4121.1 (4)
H11A—O11—H11B118 (3)N3—C13—C14121.6 (5)
H12A—O12—H12B111 (7)N3—C13—H13119.2
C1—N1—C12118.4 (4)C14—C13—H13119.2
C1—N1—Cu1128.4 (3)C15—C14—C13120.4 (5)
C12—N1—Cu1113.1 (3)C15—C14—H14119.8
C10—N2—C11118.2 (4)C13—C14—H14119.8
C10—N2—Cu1131.1 (3)C14—C15—C16119.7 (5)
C11—N2—Cu1110.7 (3)C14—C15—H15120.1
C13—N3—C24118.5 (4)C16—C15—H15120.1
C13—N3—Cu1130.1 (3)C24—C16—C15116.7 (5)
C24—N3—Cu1111.4 (3)C24—C16—C17118.0 (5)
C22—N4—C23117.9 (4)C15—C16—C17125.3 (5)
C22—N4—Cu1130.0 (3)C18—C17—C16121.6 (5)
C23—N4—Cu1112.1 (3)C18—C17—H17119.2
O2—N5—C25123.7 (4)C16—C17—H17119.2
O2—N5—Cu1120.9 (3)C17—C18—C19122.2 (5)
C25—N5—Cu1115.3 (3)C17—C18—H18118.9
C26—N6—O1117.2 (4)C19—C18—H18118.9
C26—N6—Cu1116.4 (3)C23—C19—C20117.0 (5)
O1—N6—Cu1125.3 (3)C23—C19—C18117.1 (5)
O7—N7—O6120.1 (5)C20—C19—C18125.9 (5)
O7—N7—O5119.4 (5)C21—C20—C19118.9 (5)
O6—N7—O5120.3 (5)C21—C20—H20120.6
O10—N8—O8131.8 (13)C19—C20—H20120.6
O10—N8—O9118.5 (11)C20—C21—C22121.0 (5)
O8—N8—O9109.5 (11)C20—C21—H21119.5
N1—C1—C2121.5 (5)C22—C21—H21119.5
N1—C1—H1119.2N4—C22—C21121.8 (4)
C2—C1—H1119.2N4—C22—H22119.1
C3—C2—C1120.4 (5)C21—C22—H22119.1
C3—C2—H2119.8N4—C23—C19123.5 (4)
C1—C2—H2119.8N4—C23—C24116.3 (4)
C2—C3—C4120.2 (5)C19—C23—C24120.2 (4)
C2—C3—H3119.9N3—C24—C16123.1 (4)
C4—C3—H3119.9N3—C24—C23116.1 (4)
C3—C4—C12116.7 (5)C16—C24—C23120.8 (4)
C3—C4—C5125.3 (5)N5—C25—C26113.1 (4)
C12—C4—C5117.9 (5)N5—C25—O3121.9 (5)
C6—C5—C4121.5 (5)C26—C25—O3124.8 (5)
C6—C5—H5119.2N6—C26—C25113.8 (4)
C4—C5—H5119.2N6—C26—O4124.0 (5)
C5—C6—C7120.7 (5)C25—C26—O4122.2 (5)
C5—C6—H6119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O6i0.932.553.289 (6)137
C18—H18···O2ii0.932.423.269 (7)152
C5—H5···O1iii0.932.553.354 (6)145
C3—H3···O5iv0.932.543.387 (7)151
O1—H1A···O6v0.822.002.697 (5)143
O1—H1A···O5v0.822.362.991 (5)134
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1, z; (iii) x+1, y+2, z; (iv) x+1, y+1, z+1; (v) x, y+1, z1.

Experimental details

Crystal data
Chemical formula[Cu(C12H8N2)2(C2H4N2O4)](NO3)2·2H2O
Mr704.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)13.9108 (7), 12.011 (3), 18.338 (4)
β (°) 95.897 (5)
V3)3047.8 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.30 × 0.23 × 0.18
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.798, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
19706, 6028, 3118
Rint0.041
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.167, 1.00
No. of reflections6028
No. of parameters444
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.79, 0.61

Computer programs: APEX2 (Bruker, 2005), APEX2, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—N11.933 (4)Cu1—N41.950 (3)
Cu1—N21.999 (4)Cu1—N51.906 (4)
Cu1—N31.959 (4)Cu1—N61.889 (4)
N1—Cu1—N283.30 (16)N2—Cu1—N695.51 (15)
N1—Cu1—N392.39 (15)N3—Cu1—N483.97 (15)
N1—Cu1—N4175.33 (15)N3—Cu1—N593.86 (17)
N1—Cu1—N593.57 (16)N3—Cu1—N6174.47 (16)
N1—Cu1—N690.45 (15)N4—Cu1—N589.60 (15)
N2—Cu1—N389.54 (15)N4—Cu1—N693.42 (15)
N2—Cu1—N493.71 (15)N5—Cu1—N681.23 (17)
N2—Cu1—N5175.49 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O6i0.932.553.289 (6)137
C18—H18···O2ii0.932.423.269 (7)152
C5—H5···O1iii0.932.553.354 (6)145
C3—H3···O5iv0.932.543.387 (7)151
O1—H1A···O6v0.822.002.697 (5)143
O1—H1A···O5v0.822.362.991 (5)134
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1, z; (iii) x+1, y+2, z; (iv) x+1, y+1, z+1; (v) x, y+1, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds