Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C14H18N4O8, is a glycoluril derivative, composed of two five-membered rings in envelope conformations and two six-membered rings in chair conformations. In the crystal structure, inter­molecular C—H...O hydrogen bonds link the mol­ecules into a three-dimensional network. One methyl group and the H atoms on the adjacent C atom are disordered over two positions; the site-occupancy factors are ca 0.62 and 0.38.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807033739/hk2272sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807033739/hk2272Isup2.hkl
Contains datablock I

CCDC reference: 657763

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.005 Å
  • Disorder in main residue
  • R factor = 0.042
  • wR factor = 0.105
  • Data-to-parameter ratio = 8.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.20 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C7 PLAT301_ALERT_3_C Main Residue Disorder ......................... 4.00 Perc. PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.00 From the CIF: _reflns_number_total 1983 Count of symmetry unique reflns 1996 Completeness (_total/calc) 99.35% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The glycoluril skeleton has served as an important building block for the preparation of a wide variety of supramolecular assemblies (Wu et al., 2002; Hof et al., 2002). The title compound is a glycoluril derivative, and is an important intermediate for the preparation of molecular clips (van Nunen et al., 1997). The molecular clip is a molecule with a rigid U-shaped cavity in which small aromatic guest molecules can be complexed by hydrogen bonding and aromatic stacking interactions (Rowan et al., 1999). We report herein the crystal structure of the title glycoluril derivative, (I).

In the molecule of (I), (Fig. 1) the bond lengths and angles are generally within normal ranges (Allen et al., 1987) and are in accordance with the corresponding values in similar compounds (Li et al., 2007; Cao et al., 2006). The rings A (O1/N1/N2/C1/C2/C5) and B (O4/N3/N4/C9/C13/C14) are not planar having total puckering amplitudes, QT of 1.844 (3) Å and 2.367 (3) Å, respectively, and chair conformations [φ = -28.16 (2)°, θ = 58.42 (4)° and φ = -90.10 (3)°, θ = 91.04 (3)°] (Cremer & Pople, 1975). Rings C (N1/N3/C3/C5/C9) and D (N2/N4/C4/C5/C9) have pseudo twofold axis passing through atom C9 and the mid-point of C3—N1 bond (for ring C) and atom C5 and the mid-point of C4—N4 bond (for ring D), as can be deduced from the torsion angles (Table 1). The conformations of rings C and D are envelopes, with atoms C3 and C4 at the flap positions, 0.241 (4) Å and 0.231 (3) Å from the mean planes through the other four atoms, respectively.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 2) link the molecules into a three dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Wu et al. (2002); Hof et al. (2002); van Nunen & Nolte (1997); Rowan et al. (1999); Burnett et al. (2003); Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For related structures, see: Li et al. (2007); Cao et al. (2006).

Experimental top

The title compound was synthesized according to the reported procedure (Burnett et al., 2003). Crystals appropriate for X-ray data collection were obtained by slow evaporation of the dichloromethane solution at 283 K.

Refinement top

When the crystal structure was solved, the atoms H7A, H7B, C8, H8A, H8B and H8C were found to be disordered. During refinement with isotropic thermal parameters, the occupancies of disordered H atoms were refined as H7A = 0.379 (16), H7C = 0.621 (16), H7B = 0.379 (16), H7D = 0.621 (16), H8A = 0.621 (16), H8D = 0.379 (16), H8B = 0.621 (16), H8E = 0.379 (16), H8C = 0.621 (16) and H8F = 0.379 (16). The remaining site occupancy factors were also refined as C8 = 0.621 (16) and C8' = 0.379 (16) during anisotropic refinement. H atoms were positioned geometrically with C—H = 0.97 and 0.96 Å for methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for methylene H atoms.

Structure description top

The glycoluril skeleton has served as an important building block for the preparation of a wide variety of supramolecular assemblies (Wu et al., 2002; Hof et al., 2002). The title compound is a glycoluril derivative, and is an important intermediate for the preparation of molecular clips (van Nunen et al., 1997). The molecular clip is a molecule with a rigid U-shaped cavity in which small aromatic guest molecules can be complexed by hydrogen bonding and aromatic stacking interactions (Rowan et al., 1999). We report herein the crystal structure of the title glycoluril derivative, (I).

In the molecule of (I), (Fig. 1) the bond lengths and angles are generally within normal ranges (Allen et al., 1987) and are in accordance with the corresponding values in similar compounds (Li et al., 2007; Cao et al., 2006). The rings A (O1/N1/N2/C1/C2/C5) and B (O4/N3/N4/C9/C13/C14) are not planar having total puckering amplitudes, QT of 1.844 (3) Å and 2.367 (3) Å, respectively, and chair conformations [φ = -28.16 (2)°, θ = 58.42 (4)° and φ = -90.10 (3)°, θ = 91.04 (3)°] (Cremer & Pople, 1975). Rings C (N1/N3/C3/C5/C9) and D (N2/N4/C4/C5/C9) have pseudo twofold axis passing through atom C9 and the mid-point of C3—N1 bond (for ring C) and atom C5 and the mid-point of C4—N4 bond (for ring D), as can be deduced from the torsion angles (Table 1). The conformations of rings C and D are envelopes, with atoms C3 and C4 at the flap positions, 0.241 (4) Å and 0.231 (3) Å from the mean planes through the other four atoms, respectively.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 2) link the molecules into a three dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

For related literature, see: Wu et al. (2002); Hof et al. (2002); van Nunen & Nolte (1997); Rowan et al. (1999); Burnett et al. (2003); Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For related structures, see: Li et al. (2007); Cao et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
Diethyl cis-4,8-dioxo-3,4,7,8-tetrahydro-1H,5H-2,6-dioxa-3a,4a,7a,8a- tetraazacyclopenta[def]fluorene-8 b,8c-dicarboxylate top
Crystal data top
C14H18N4O8F(000) = 388
Mr = 370.32Dx = 1.410 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1973 reflections
a = 8.3182 (11) Åθ = 2.4–24.9°
b = 12.4523 (17) ŵ = 0.12 mm1
c = 9.0479 (12) ÅT = 292 K
β = 111.429 (2)°Block, colourless
V = 872.4 (2) Å30.30 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART 4 K CCD area-detector
diffractometer
1764 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 27.0°, θmin = 2.4°
φ and ω scansh = 109
5178 measured reflectionsk = 1515
1983 independent reflectionsl = 811
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.0447P]
where P = (Fo2 + 2Fc2)/3
1983 reflections(Δ/σ)max = 0.001
242 parametersΔρmax = 0.15 e Å3
2 restraintsΔρmin = 0.18 e Å3
Crystal data top
C14H18N4O8V = 872.4 (2) Å3
Mr = 370.32Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.3182 (11) ŵ = 0.12 mm1
b = 12.4523 (17) ÅT = 292 K
c = 9.0479 (12) Å0.30 × 0.20 × 0.20 mm
β = 111.429 (2)°
Data collection top
Bruker SMART 4 K CCD area-detector
diffractometer
1764 reflections with I > 2σ(I)
5178 measured reflectionsRint = 0.024
1983 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.11Δρmax = 0.15 e Å3
1983 reflectionsΔρmin = 0.18 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.0609 (3)0.93348 (19)0.0366 (3)0.0581 (6)
O20.7355 (3)1.1226 (2)0.1321 (3)0.0696 (7)
O30.7473 (3)0.72136 (17)0.0037 (3)0.0610 (6)
O40.4210 (3)0.9097 (2)0.1716 (3)0.0572 (6)
O51.0440 (4)1.0452 (3)0.4466 (3)0.0810 (8)
O60.8671 (3)0.9150 (2)0.4617 (3)0.0637 (6)
O70.6082 (3)1.08850 (19)0.3175 (3)0.0602 (6)
O80.4464 (3)0.9393 (2)0.2830 (3)0.0627 (7)
N10.8814 (3)1.04901 (19)0.1154 (3)0.0444 (6)
N20.8885 (3)0.86029 (18)0.1682 (3)0.0422 (5)
N30.5932 (3)1.0376 (2)0.0105 (3)0.0430 (5)
N40.6002 (3)0.85184 (18)0.0845 (3)0.0417 (5)
C11.0532 (4)0.8542 (3)0.1461 (4)0.0549 (8)
H1A1.14690.86510.24710.066*
H1B1.06660.78360.10690.066*
C21.0460 (4)1.0368 (3)0.0943 (4)0.0561 (8)
H2A1.05511.09050.02010.067*
H2B1.13991.04830.19510.067*
C30.7366 (4)1.0736 (2)0.0172 (4)0.0465 (7)
C40.7467 (3)0.8029 (2)0.0757 (4)0.0427 (6)
C50.8418 (3)0.9662 (2)0.2081 (3)0.0384 (6)
C60.9305 (4)0.9837 (3)0.3875 (4)0.0495 (7)
C70.9423 (6)0.9107 (4)0.6352 (4)0.0835 (12)
H7A1.04990.95050.67370.100*0.379 (16)
H7B0.86370.94240.67990.100*0.379 (16)
H7C0.91690.97630.67990.100*0.621 (16)
H7D1.06550.90080.67170.100*0.621 (16)
C8'0.973 (4)0.8013 (13)0.681 (2)0.120 (5)0.379 (16)
H8D0.86430.76440.65390.179*0.379 (16)
H8E1.03420.79700.79390.179*0.379 (16)
H8F1.04000.76840.62720.179*0.379 (16)
C80.864 (2)0.8187 (11)0.6818 (12)0.120 (5)0.621 (16)
H8B0.74190.83060.65120.179*0.621 (16)
H8A0.91460.80950.79490.179*0.621 (16)
H8C0.88310.75530.63020.179*0.621 (16)
C90.6399 (3)0.9613 (2)0.1413 (3)0.0371 (6)
C100.5515 (3)0.9931 (2)0.2571 (3)0.0437 (6)
C110.5389 (6)1.1295 (4)0.4340 (5)0.0843 (13)
H11A0.41601.14280.38360.101*
H11B0.55691.07740.51840.101*
C120.6285 (8)1.2279 (4)0.4977 (6)0.1070 (18)
H12A0.74961.21350.54940.161*
H12B0.58411.25750.57300.161*
H12C0.61161.27830.41300.161*
C130.4298 (4)1.0173 (3)0.1184 (4)0.0540 (8)
H13A0.33541.03110.08230.065*
H13B0.41791.06570.20580.065*
C140.4365 (4)0.8373 (3)0.0448 (4)0.0513 (7)
H14A0.42760.76400.08320.062*
H14B0.34300.84970.00710.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0501 (11)0.0574 (15)0.0793 (15)0.0006 (10)0.0384 (11)0.0035 (12)
O20.0736 (15)0.0679 (17)0.0735 (16)0.0006 (12)0.0340 (13)0.0305 (14)
O30.0601 (13)0.0372 (12)0.0925 (16)0.0007 (10)0.0360 (12)0.0151 (12)
O40.0512 (11)0.0601 (14)0.0532 (12)0.0013 (11)0.0106 (9)0.0125 (11)
O50.0752 (17)0.089 (2)0.0687 (16)0.0352 (16)0.0146 (13)0.0135 (15)
O60.0672 (13)0.0738 (16)0.0426 (11)0.0190 (12)0.0113 (10)0.0056 (11)
O70.0700 (14)0.0540 (13)0.0698 (14)0.0068 (11)0.0413 (11)0.0195 (12)
O80.0542 (12)0.0740 (17)0.0763 (15)0.0143 (11)0.0431 (11)0.0126 (13)
N10.0419 (12)0.0373 (13)0.0579 (14)0.0052 (10)0.0230 (11)0.0045 (11)
N20.0368 (11)0.0353 (12)0.0565 (14)0.0021 (9)0.0195 (10)0.0033 (11)
N30.0409 (12)0.0391 (12)0.0492 (13)0.0033 (10)0.0166 (10)0.0024 (11)
N40.0365 (11)0.0354 (12)0.0566 (14)0.0031 (9)0.0209 (10)0.0043 (11)
C10.0400 (15)0.0481 (18)0.080 (2)0.0081 (13)0.0256 (14)0.0042 (17)
C20.0431 (16)0.0531 (18)0.081 (2)0.0059 (14)0.0326 (15)0.0050 (18)
C30.0519 (16)0.0347 (14)0.0573 (17)0.0012 (12)0.0251 (13)0.0034 (13)
C40.0446 (15)0.0310 (14)0.0572 (17)0.0017 (11)0.0241 (13)0.0035 (13)
C50.0369 (12)0.0335 (13)0.0476 (15)0.0021 (10)0.0188 (11)0.0002 (11)
C60.0389 (14)0.0524 (18)0.0527 (17)0.0025 (13)0.0113 (12)0.0023 (14)
C70.098 (3)0.096 (3)0.046 (2)0.007 (3)0.0133 (19)0.004 (2)
C8'0.172 (13)0.127 (7)0.055 (3)0.058 (9)0.037 (7)0.011 (4)
C80.172 (13)0.127 (7)0.055 (3)0.058 (9)0.037 (7)0.011 (4)
C90.0358 (12)0.0320 (13)0.0447 (15)0.0019 (10)0.0159 (11)0.0020 (11)
C100.0383 (13)0.0459 (16)0.0485 (15)0.0005 (11)0.0177 (11)0.0038 (13)
C110.095 (3)0.084 (3)0.091 (3)0.003 (2)0.055 (3)0.036 (2)
C120.172 (5)0.074 (3)0.084 (3)0.002 (3)0.057 (3)0.025 (3)
C130.0450 (16)0.0562 (19)0.0551 (17)0.0096 (13)0.0113 (13)0.0024 (15)
C140.0438 (15)0.0459 (17)0.064 (2)0.0068 (13)0.0195 (13)0.0103 (14)
Geometric parameters (Å, º) top
C1—O11.416 (4)C8'—H8D0.9600
C1—N21.458 (4)C8'—H8E0.9600
C1—H1A0.9700C8'—H8F0.9600
C1—H1B0.9700C8—H8B0.9600
C2—O11.411 (4)C8—H8A0.9600
C2—N11.458 (4)C8—H8C0.9600
C2—H2A0.9700C9—N41.451 (4)
C2—H2B0.9700C9—N31.455 (4)
C3—O21.203 (4)C9—C101.536 (4)
C3—N31.380 (4)C10—O81.191 (3)
C3—N11.389 (4)C10—O71.320 (4)
C4—O31.208 (4)C11—C121.441 (7)
C4—N21.371 (4)C11—O71.466 (4)
C4—N41.390 (3)C11—H11A0.9700
C5—N11.442 (4)C11—H11B0.9700
C5—N21.457 (3)C12—H12A0.9600
C5—C61.533 (4)C12—H12B0.9600
C5—C91.565 (3)C12—H12C0.9600
C6—O51.181 (4)C13—O41.417 (4)
C6—O61.311 (4)C13—N31.454 (4)
C7—C8'1.420 (16)C13—H13A0.9700
C7—C81.455 (10)C13—H13B0.9700
C7—O61.463 (4)C14—O41.427 (4)
C7—H7A0.9700C14—N41.447 (4)
C7—H7B0.9700C14—H14A0.9700
C7—H7C0.9692C14—H14B0.9700
C7—H7D0.9628
C2—O1—C1110.1 (2)C8—C7—H7C110.7
C13—O4—C14110.3 (2)O6—C7—H7C110.1
C6—O6—C7118.6 (3)H7A—C7—H7C74.4
C10—O7—C11115.8 (3)C8'—C7—H7D74.0
C3—N1—C5110.5 (2)C8—C7—H7D109.5
C3—N1—C2118.0 (3)O6—C7—H7D110.9
C5—N1—C2115.3 (2)H7B—C7—H7D134.8
C4—N2—C5112.0 (2)H7C—C7—H7D109.4
C4—N2—C1122.1 (3)C7—C8'—H8D109.5
C5—N2—C1115.5 (2)H7D—C8'—H8D147.9
C3—N3—C13121.8 (3)C7—C8'—H8E109.5
C3—N3—C9111.6 (2)H7D—C8'—H8E91.2
C13—N3—C9115.6 (2)C7—C8'—H8F109.4
C4—N4—C14119.0 (2)H7D—C8'—H8F84.9
C4—N4—C9109.9 (2)C7—C8—H8B109.5
C14—N4—C9115.4 (2)C7—C8—H8A109.5
O1—C1—N2110.2 (2)H8B—C8—H8A109.5
O1—C1—H1A109.6C7—C8—H8C109.4
N2—C1—H1A109.6H8B—C8—H8C109.5
O1—C1—H1B109.6H8A—C8—H8C109.5
N2—C1—H1B109.6N4—C9—N3111.5 (2)
H1A—C1—H1B108.1N4—C9—C10112.4 (2)
O1—C2—N1110.9 (2)N3—C9—C10109.5 (2)
O1—C2—H2A109.5N4—C9—C5104.3 (2)
N1—C2—H2A109.5N3—C9—C5102.6 (2)
O1—C2—H2B109.5C10—C9—C5116.1 (2)
N1—C2—H2B109.5O8—C10—O7127.0 (3)
H2A—C2—H2B108.0O8—C10—C9123.9 (3)
O2—C3—N3126.0 (3)O7—C10—C9109.1 (2)
O2—C3—N1126.1 (3)C12—C11—O7107.5 (4)
N3—C3—N1107.8 (3)C12—C11—H11A110.2
O3—C4—N2126.5 (3)O7—C11—H11A110.2
O3—C4—N4125.2 (3)C12—C11—H11B110.2
N2—C4—N4108.3 (2)O7—C11—H11B110.2
N1—C5—N2111.4 (2)H11A—C11—H11B108.5
N1—C5—C6113.0 (2)C11—C12—H12A109.5
N2—C5—C6108.8 (2)C11—C12—H12B109.5
N1—C5—C9104.1 (2)H12A—C12—H12B109.5
N2—C5—C9102.4 (2)C11—C12—H12C109.5
C6—C5—C9116.6 (2)H12A—C12—H12C109.5
O5—C6—O6126.5 (3)H12B—C12—H12C109.5
O5—C6—C5124.6 (3)O4—C13—N3110.7 (2)
O6—C6—C5108.8 (2)O4—C13—H13A109.5
C8'—C7—O6108.1 (9)N3—C13—H13A109.5
C8—C7—O6106.2 (5)O4—C13—H13B109.5
C8'—C7—H7A110.1N3—C13—H13B109.5
C8—C7—H7A138.7H13A—C13—H13B108.1
O6—C7—H7A110.1O4—C14—N4110.7 (2)
C8'—C7—H7B110.0O4—C14—H14A109.5
C8—C7—H7B75.9N4—C14—H14A109.5
O6—C7—H7B110.1O4—C14—H14B109.5
H7A—C7—H7B108.4N4—C14—H14B109.5
C8'—C7—H7C136.8H14A—C14—H14B108.1
N2—C1—O1—C260.7 (3)N1—C5—C9—N4120.5 (2)
O1—C1—N2—C490.1 (3)N2—C5—C9—N44.3 (3)
O1—C1—N2—C552.1 (4)C6—C5—C9—N4114.3 (3)
N1—C2—O1—C160.9 (3)N1—C5—C9—N34.1 (3)
O1—C2—N1—C381.6 (3)N2—C5—C9—N3112.1 (2)
O1—C2—N1—C552.0 (4)C6—C5—C9—N3129.3 (2)
O2—C3—N1—C5164.3 (3)N1—C5—C9—C10115.4 (3)
N3—C3—N1—C519.3 (3)N2—C5—C9—C10128.5 (2)
O2—C3—N1—C228.6 (5)C6—C5—C9—C109.9 (3)
N3—C3—N1—C2155.0 (3)O5—C6—O6—C70.7 (6)
O2—C3—N3—C1324.5 (5)C5—C6—O6—C7175.2 (3)
N1—C3—N3—C13159.0 (3)C8'—C7—O6—C6132.7 (13)
O2—C3—N3—C9167.1 (3)C8—C7—O6—C6172.3 (9)
N1—C3—N3—C916.5 (3)N4—C9—N3—C3103.8 (3)
O3—C4—N2—C5167.0 (3)C10—C9—N3—C3131.2 (2)
N4—C4—N2—C515.9 (3)C5—C9—N3—C37.3 (3)
O3—C4—N2—C123.7 (5)N4—C9—N3—C1341.3 (3)
N4—C4—N2—C1159.2 (3)C10—C9—N3—C1383.8 (3)
O3—C4—N4—C1427.8 (4)C5—C9—N3—C13152.4 (2)
N2—C4—N4—C14155.0 (2)N3—C9—N4—C496.1 (2)
O3—C4—N4—C9164.1 (3)C10—C9—N4—C4140.5 (2)
N2—C4—N4—C918.7 (3)C5—C9—N4—C413.9 (3)
N2—C5—N1—C395.5 (3)N3—C9—N4—C1441.8 (3)
C6—C5—N1—C3141.7 (2)C10—C9—N4—C1481.6 (3)
C9—C5—N1—C314.2 (3)C5—C9—N4—C14151.9 (2)
N2—C5—N1—C241.5 (3)N4—C9—C10—O88.5 (4)
C6—C5—N1—C281.3 (3)N3—C9—C10—O8116.1 (3)
C9—C5—N1—C2151.1 (2)C5—C9—C10—O8128.3 (3)
N1—C5—N2—C4104.0 (3)N4—C9—C10—O7173.0 (2)
C6—C5—N2—C4130.8 (2)N3—C9—C10—O762.5 (3)
C9—C5—N2—C46.7 (3)C5—C9—C10—O753.1 (3)
N1—C5—N2—C141.9 (3)O8—C10—O7—C112.9 (5)
C6—C5—N2—C183.3 (3)C9—C10—O7—C11178.6 (3)
C9—C5—N2—C1152.6 (2)C12—C11—O7—C10174.1 (4)
N1—C5—C6—O513.6 (4)N3—C13—O4—C1459.8 (3)
N2—C5—C6—O5110.6 (4)O4—C13—N3—C390.0 (4)
C9—C5—C6—O5134.3 (4)O4—C13—N3—C951.1 (3)
N1—C5—C6—O6170.4 (2)O4—C14—N4—C481.8 (3)
N2—C5—C6—O665.4 (3)O4—C14—N4—C952.2 (3)
C9—C5—C6—O649.7 (3)N4—C14—O4—C1360.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O8i0.972.563.223 (4)125
C1—H1B···O2ii0.972.553.404 (4)147
C2—H2A···O3iii0.972.383.183 (4)140
C8—H8A···O1iv0.962.593.345 (12)136
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z; (iii) x+2, y+1/2, z; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H18N4O8
Mr370.32
Crystal system, space groupMonoclinic, P21
Temperature (K)292
a, b, c (Å)8.3182 (11), 12.4523 (17), 9.0479 (12)
β (°) 111.429 (2)
V3)872.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 4 K CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5178, 1983, 1764
Rint0.024
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.105, 1.11
No. of reflections1983
No. of parameters242
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker, 2001).

Selected torsion angles (º) top
N3—C3—N1—C519.3 (3)C9—C5—N2—C46.7 (3)
N1—C3—N3—C916.5 (3)N2—C5—C9—N44.3 (3)
N4—C4—N2—C515.9 (3)N1—C5—C9—N34.1 (3)
N2—C4—N4—C918.7 (3)C5—C9—N3—C37.3 (3)
C9—C5—N1—C314.2 (3)C5—C9—N4—C413.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O8i0.972.563.223 (4)125.4
C1—H1B···O2ii0.972.553.404 (4)146.8
C2—H2A···O3iii0.972.383.183 (4)140.0
C8—H8A···O1iv0.962.593.345 (12)135.8
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z; (iii) x+2, y+1/2, z; (iv) x, y, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds