Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the mol­ecule of the title compound, C12H22N2O6, the dihedral angle between the planar carbamo­yloxy and ester C—COO units is 22.23 (3)°. In the crystal structure, inter­molecular O—H...N and N—H...O hydrogen bonds link the mol­ecules into chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807025871/hk2260sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807025871/hk2260Isup2.hkl
Contains datablock I

CCDC reference: 654862

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.057
  • wR factor = 0.129
  • Data-to-parameter ratio = 8.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.96 From the CIF: _reflns_number_total 1540 Count of symmetry unique reflns 1540 Completeness (_total/calc) 100.00% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT792_ALERT_1_G Check the Absolute Configuration of C8 = ... R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the process of synthesis, we obtained the title compound, (I), and we herein report its crystal structure.

In the molecule of (I), (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). The dihedral angle between the planar (O1/O2/N1/C5) and (O5/O6/C10/C11) units is 22.23 (3)°.

In the crystal structure, the intermolecular O—H···N and N—H···O hydrogen bonds (Table 1) link the molecules into chains, in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, maleic anhydride (10 g, 100 mmol) and methanol (50 ml) were added into a four-necked round-bottom flask fitted with a mechanical stirrer, dropping funnel and thermometer. After the mixture was refluxed in a water bath for 30 min, excess methanol was distilled off. Triethylamine (20 ml) was added to the reside, cooled in ice, and stirred very slowly. Then, N-(tert-butoxycarbonyl)-1,2-ethane diamine (16 g, 100 mmol) was added, and the mixture was stirred in a water bath for 2 h. The mixture was filtrated and washed twice with hot acetone (100 ml). Crystals of (I) suitable for X-ray analsyis were obtained by slow evaporation of methanol (10 ml) (yield; 23.5 g, 72%, m.p. 454 K).

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 Å (for OH), N—H = 0.86 Å (for NH) and C—H = 0.98, 0.97 and 0.96 Å for methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x = 1.5 for NH and methyl H atoms, and x = 1.2 for all other H atoms.

Structure description top

In the process of synthesis, we obtained the title compound, (I), and we herein report its crystal structure.

In the molecule of (I), (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). The dihedral angle between the planar (O1/O2/N1/C5) and (O5/O6/C10/C11) units is 22.23 (3)°.

In the crystal structure, the intermolecular O—H···N and N—H···O hydrogen bonds (Table 1) link the molecules into chains, in which they may be effective in the stabilization of the structure.

For general background, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
Methyl 3-carboxy-7-(tert-butoxycarbonyl)-4,7-diazaheptanoate top
Crystal data top
C12H22N2O6Dx = 1.312 Mg m3
Mr = 290.32Melting point: 454 K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 25 reflections
a = 10.824 (2) Åθ = 9–12°
b = 15.204 (3) ŵ = 0.11 mm1
c = 8.9300 (18) ÅT = 298 K
V = 1469.6 (5) Å3Block, colourless
Z = 40.40 × 0.30 × 0.10 mm
F(000) = 624
Data collection top
Enraf–Nonius CAD-4
diffractometer
984 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 26.0°, θmin = 1.3°
ω/2θ scansh = 013
Absorption correction: ψ scan
(North et al., 1968)
k = 018
Tmin = 0.954, Tmax = 0.990l = 010
1921 measured reflections3 standard reflections every 200 reflections
1540 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.059P)2 + 3.5659P]
where P = (Fo2 + 2Fc2)/3
1540 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C12H22N2O6V = 1469.6 (5) Å3
Mr = 290.32Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 10.824 (2) ŵ = 0.11 mm1
b = 15.204 (3) ÅT = 298 K
c = 8.9300 (18) Å0.40 × 0.30 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
984 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.042
Tmin = 0.954, Tmax = 0.9903 standard reflections every 200 reflections
1921 measured reflections intensity decay: none
1540 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 0.90Δρmax = 0.23 e Å3
1540 reflectionsΔρmin = 0.13 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9191 (4)0.8093 (3)0.6834 (6)0.0502 (12)
O20.9209 (5)0.8738 (3)0.4545 (6)0.0675 (15)
O31.1376 (4)0.4304 (3)0.1506 (6)0.0587 (15)
H31.20970.42530.17770.088*
O41.1218 (3)0.5130 (3)0.3553 (5)0.0538 (12)
O50.8910 (4)0.3791 (3)0.4610 (6)0.0600 (13)
O60.7747 (4)0.2899 (3)0.3195 (6)0.0562 (13)
N10.8734 (5)0.7303 (4)0.4871 (7)0.0542 (15)
H10.87480.68690.54870.065*
N20.8842 (4)0.5550 (3)0.3022 (6)0.0385 (13)
H20.83910.54170.37820.046*
C10.8483 (4)0.9585 (4)0.7424 (5)0.072 (3)
H1B0.85200.97870.64070.108*
H1C0.86051.00720.80910.108*
H1A0.76900.93250.76100.108*
C20.9464 (4)0.8585 (4)0.9272 (5)0.070 (3)
H2B1.01130.81620.94030.105*
H2C0.86820.83140.94840.105*
H2A0.95910.90700.99440.105*
C31.0736 (4)0.9238 (4)0.7211 (4)0.070 (2)
H3A1.07000.94510.62000.105*
H3B1.13180.87630.72720.105*
H3C1.09910.97060.78640.105*
C40.9472 (4)0.8915 (4)0.7681 (5)0.055 (2)
C50.9062 (4)0.8111 (4)0.5360 (5)0.0466 (17)
C60.8359 (4)0.7149 (4)0.3337 (4)0.065 (2)
H6A0.84190.76980.27860.078*
H6B0.74990.69690.33280.078*
C70.9117 (4)0.6461 (4)0.2543 (4)0.0552 (19)
H7A0.89720.65090.14740.066*
H7B0.99860.65790.27200.066*
C80.9439 (4)0.4897 (4)0.2033 (4)0.0359 (14)
H80.94220.51490.10230.043*
C91.0804 (4)0.4764 (4)0.2425 (5)0.0365 (14)
C100.8706 (4)0.4040 (4)0.1954 (4)0.0362 (14)
H10A0.79070.41620.15070.043*
H10B0.92090.36470.13540.043*
C110.8504 (4)0.3591 (4)0.3417 (4)0.0420 (15)
C120.7384 (4)0.2387 (4)0.4468 (5)0.070 (2)
H12A0.80510.23660.51750.105*
H12B0.71820.18010.41520.105*
H12C0.66740.26520.49310.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.046 (3)0.045 (2)0.059 (3)0.009 (2)0.003 (3)0.002 (2)
O20.086 (4)0.050 (3)0.067 (4)0.005 (3)0.000 (3)0.013 (3)
O30.025 (2)0.052 (3)0.099 (4)0.002 (2)0.016 (3)0.012 (3)
O40.0221 (18)0.092 (4)0.047 (3)0.010 (2)0.008 (2)0.009 (3)
O50.049 (3)0.076 (3)0.055 (3)0.013 (2)0.007 (3)0.005 (3)
O60.049 (3)0.058 (3)0.062 (3)0.015 (2)0.010 (3)0.010 (3)
N10.061 (4)0.048 (3)0.053 (4)0.008 (3)0.009 (3)0.006 (3)
N20.020 (2)0.050 (3)0.045 (3)0.001 (2)0.001 (2)0.002 (3)
C10.051 (5)0.067 (5)0.102 (9)0.024 (4)0.010 (6)0.022 (6)
C20.049 (4)0.087 (7)0.074 (6)0.011 (4)0.004 (4)0.028 (5)
C30.045 (4)0.061 (4)0.104 (7)0.006 (3)0.008 (5)0.008 (5)
C40.034 (3)0.047 (4)0.082 (6)0.002 (3)0.007 (4)0.018 (4)
C50.027 (3)0.061 (5)0.052 (4)0.005 (3)0.003 (3)0.008 (4)
C60.071 (5)0.067 (5)0.059 (5)0.025 (4)0.011 (5)0.002 (5)
C70.076 (5)0.049 (4)0.041 (4)0.011 (4)0.002 (4)0.006 (3)
C80.018 (2)0.045 (3)0.044 (4)0.001 (2)0.001 (3)0.000 (3)
C90.018 (2)0.047 (3)0.044 (4)0.005 (3)0.001 (3)0.002 (3)
C100.021 (3)0.052 (3)0.036 (3)0.001 (3)0.001 (3)0.008 (3)
C110.020 (3)0.052 (4)0.054 (4)0.003 (3)0.002 (3)0.016 (4)
C120.058 (4)0.070 (4)0.083 (6)0.004 (4)0.029 (5)0.002 (5)
Geometric parameters (Å, º) top
O1—C51.324 (8)C2—H2C0.9600
O1—C41.492 (8)C2—H2A0.9600
O2—C51.211 (8)C3—C41.513 (9)
O3—C91.244 (7)C3—H3A0.9600
O3—H30.8200C3—H3B0.9600
O4—C91.235 (7)C3—H3C0.9600
O5—C111.192 (8)C6—C71.508 (9)
O6—C111.348 (7)C6—H6A0.9700
O6—C121.433 (8)C6—H6B0.9700
N1—C51.351 (8)C7—H7A0.9700
N1—C61.448 (10)C7—H7B0.9700
N1—H10.8600C8—C91.531 (7)
N2—C81.477 (7)C8—C101.528 (7)
N2—C71.479 (8)C8—H80.9800
N2—H20.8600C10—C111.491 (9)
C1—C41.495 (9)C10—H10A0.9700
C1—H1B0.9600C10—H10B0.9701
C1—H1C0.9600C12—H12A0.9600
C1—H1A0.9600C12—H12B0.9600
C2—C41.507 (11)C12—H12C0.9600
C2—H2B0.9600
C5—O1—C4120.5 (6)N1—C6—C7113.8 (6)
C9—O3—H3109.5N1—C6—H6A108.8
C11—O6—C12118.3 (6)C7—C6—H6A108.8
C5—N1—C6121.8 (6)N1—C6—H6B108.8
C5—N1—H1119.1C7—C6—H6B108.8
C6—N1—H1119.1H6A—C6—H6B107.7
C8—N2—C7111.6 (5)N2—C7—C6113.8 (6)
C8—N2—H2124.2N2—C7—H7A108.8
C7—N2—H2124.2C6—C7—H7A108.8
C4—C1—H1B109.5N2—C7—H7B108.8
C4—C1—H1C109.5C6—C7—H7B108.8
H1B—C1—H1C109.5H7A—C7—H7B107.7
C4—C1—H1A109.5N2—C8—C9112.0 (5)
H1B—C1—H1A109.5N2—C8—C10111.9 (4)
H1C—C1—H1A109.5C9—C8—C10113.5 (5)
C4—C2—H2B109.5N2—C8—H8106.3
C4—C2—H2C109.5C9—C8—H8106.3
H2B—C2—H2C109.5C10—C8—H8106.3
C4—C2—H2A109.5O4—C9—O3127.6 (5)
H2B—C2—H2A109.5O4—C9—C8118.5 (5)
H2C—C2—H2A109.5O3—C9—C8113.9 (6)
C4—C3—H3A109.5C11—C10—C8115.2 (5)
C4—C3—H3B109.5C11—C10—H10A108.5
H3A—C3—H3B109.5C8—C10—H10A108.6
C4—C3—H3C109.5C11—C10—H10B106.5
H3A—C3—H3C109.5C8—C10—H10B105.1
H3B—C3—H3C109.5H10A—C10—H10B113.0
O1—C4—C1110.3 (6)O5—C11—O6123.7 (7)
O1—C4—C2101.5 (6)O5—C11—C10127.8 (5)
C1—C4—C2111.5 (7)O6—C11—C10108.5 (6)
O1—C4—C3108.4 (6)O6—C12—H12A109.5
C1—C4—C3112.5 (6)O6—C12—H12B109.5
C2—C4—C3112.0 (6)H12A—C12—H12B109.5
O2—C5—O1126.9 (7)O6—C12—H12C109.5
O2—C5—N1123.8 (7)H12A—C12—H12C109.5
O1—C5—N1109.3 (6)H12B—C12—H12C109.5
C5—O1—C4—C158.8 (9)C7—N2—C8—C10150.7 (5)
C5—O1—C4—C2177.1 (6)N2—C8—C9—O46.5 (8)
C5—O1—C4—C364.9 (7)C10—C8—C9—O4121.5 (6)
C4—O1—C5—O24.1 (10)N2—C8—C9—O3171.6 (5)
C4—O1—C5—N1176.0 (5)C10—C8—C9—O360.5 (7)
C6—N1—C5—O28.8 (10)N2—C8—C10—C1158.4 (6)
C6—N1—C5—O1171.2 (6)C9—C8—C10—C1169.6 (6)
C5—N1—C6—C7123.3 (7)C12—O6—C11—O51.6 (8)
C8—N2—C7—C6169.8 (5)C12—O6—C11—C10177.6 (5)
N1—C6—C7—N274.1 (8)C8—C10—C11—O55.2 (8)
C7—N2—C8—C980.5 (6)C8—C10—C11—O6173.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N2i0.822.213.001 (6)161
N1—H1···O3ii0.862.012.849 (8)166
N2—H2···O3ii0.862.483.128 (8)132
N2—H2···O4iii0.862.503.060 (6)123
Symmetry codes: (i) x+1/2, y+1, z; (ii) x+2, y+1, z+1/2; (iii) x1/2, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H22N2O6
Mr290.32
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)298
a, b, c (Å)10.824 (2), 15.204 (3), 8.9300 (18)
V3)1469.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.954, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
1921, 1540, 984
Rint0.042
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.129, 0.90
No. of reflections1540
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.13

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CAD-4 Software, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N2i0.822.213.001 (6)161
N1—H1···O3ii0.862.012.849 (8)166
N2—H2···O3ii0.862.483.128 (8)132
N2—H2···O4iii0.862.503.060 (6)123
Symmetry codes: (i) x+1/2, y+1, z; (ii) x+2, y+1, z+1/2; (iii) x1/2, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds