Download citation
Download citation
link to html
The asymmetric unit of the title compound, [Ce(NO3)4(C10H8N2)2], contains one half-mol­ecule. The CeIV atom, lying on a crystallographic twofold rotation axis, is ten-coordinated by two N atoms of 4,4′-bipyridine and eight O atoms of four NO3 ligands. In the crystal structure, intra- and inter­molecular C—H...O hydrogen bonds link the mol­ecules into a supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807021502/hk2243sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807021502/hk2243Isup2.hkl
Contains datablock I

CCDC reference: 1302586

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.024
  • wR factor = 0.074
  • Data-to-parameter ratio = 13.9

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Ce1 - O1 .. 16.64 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Ce1 - O3 .. 13.36 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Ce1 - O4 .. 12.61 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Ce1 - O6 .. 11.49 su PLAT430_ALERT_2_B Short Inter D...A Contact N4 .. N4 .. 2.64 Ang.
Alert level C PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ce1 - N3 .. 6.24 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O1 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O3 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O4 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O6 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Ce1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N2 PLAT432_ALERT_2_C Short Inter X...Y Contact O1 .. C8 .. 3.01 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Ce1 (3) 2.86
0 ALERT level A = In general: serious problem 6 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 13 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Molecular magnetic compounds, such as molecular ferro- and ferrimagnets, organic magnets, single-molecule magnets and high-spin molecules, have recently attracted attention (Miller & Drillon, 2001a,b, 2002). Owing to lanthanide metals unique physical and chemical properties, lanthanide complexes play an important role in special materials having optical, electronic, magnetic and biological importance (Benelli et al., 1992; Deborah et al., 2000; Farrugia et al., 2000). More importantly, since the removal of lanthanides from radioactive high level liquid waste (HLLW) has been shown to improve the transmutation of long-lived transuranic elements to shortlived or even stable nuclides (Modolo & Odoj, 1998), the coordination chemistry of the 4f metals continues to attract interest. We herein report the crystal structure of the title compound, (I).

The asymmetric unit of the title compound, (I), contains one-half molecule (Fig. 1). The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The irregular ten-coordinate environment of the CeIV atom, lying on a crystallographic twofold rotation axis, is completed by the two N atoms of 4,4'-bipyridine and eight O atoms of four NO3- ligands (Table 1). The Ce—O bonds are between 2.385 (2)–2.604 (3) Å, while the Ce—N bond length is 2.585 (3) Å.

Rings A (N3/C1—C5) and B (N4/C6—C10) are, of course, planar and the dihedral angle between them is A/B = 37.56 (2)°.

As can be seen from the packing diagram (Fig. 2), the intra- and intermolecular C—H···O hydrogen bonds (Table 2) link the molecules into a supramolecular network structure, in which they may be effective in the stabilization of the crystal structure. Dipol-dipol and van der Waals interactions are also effective in the molecular packing.

Related literature top

For general backgroud, see: Allen et al. (1987); Benelli et al. (1992); Deborah et al. (2000); Farrugia et al. (2000); Miller & Drillon (2001a,b, 2002); Modolo & Odoj (1998).

Experimental top

For the preparation of the title compound, ammonium cerium(IV) nitrate (109.6 mg, 0.2 mmol), 4,4'-bipyridine (62.4 mg, 0.4 mmol), and distilled water (4000.0 mg) were placed into a Teflon-lined Parr bomb (23 ml) and sealed. The bomb was then heated under autogenous pressure for 7 d at 413 K and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colorless solution was decanted from small colorless crystals, which were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature (yield; 58.6 mg, 34%).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Molecular magnetic compounds, such as molecular ferro- and ferrimagnets, organic magnets, single-molecule magnets and high-spin molecules, have recently attracted attention (Miller & Drillon, 2001a,b, 2002). Owing to lanthanide metals unique physical and chemical properties, lanthanide complexes play an important role in special materials having optical, electronic, magnetic and biological importance (Benelli et al., 1992; Deborah et al., 2000; Farrugia et al., 2000). More importantly, since the removal of lanthanides from radioactive high level liquid waste (HLLW) has been shown to improve the transmutation of long-lived transuranic elements to shortlived or even stable nuclides (Modolo & Odoj, 1998), the coordination chemistry of the 4f metals continues to attract interest. We herein report the crystal structure of the title compound, (I).

The asymmetric unit of the title compound, (I), contains one-half molecule (Fig. 1). The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The irregular ten-coordinate environment of the CeIV atom, lying on a crystallographic twofold rotation axis, is completed by the two N atoms of 4,4'-bipyridine and eight O atoms of four NO3- ligands (Table 1). The Ce—O bonds are between 2.385 (2)–2.604 (3) Å, while the Ce—N bond length is 2.585 (3) Å.

Rings A (N3/C1—C5) and B (N4/C6—C10) are, of course, planar and the dihedral angle between them is A/B = 37.56 (2)°.

As can be seen from the packing diagram (Fig. 2), the intra- and intermolecular C—H···O hydrogen bonds (Table 2) link the molecules into a supramolecular network structure, in which they may be effective in the stabilization of the crystal structure. Dipol-dipol and van der Waals interactions are also effective in the molecular packing.

For general backgroud, see: Allen et al. (1987); Benelli et al. (1992); Deborah et al. (2000); Farrugia et al. (2000); Miller & Drillon (2001a,b, 2002); Modolo & Odoj (1998).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code (A): 2 - x, y, 1 - z].
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
Bis(4,4'-bipyridine-κ2N,N')tetrakis(nitrato-κ2O,O')cerium(IV) top
Crystal data top
[Ce(NO3)4(C10H8N2)2]F(000) = 1384
Mr = 700.53Dx = 1.826 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8351 reflections
a = 19.106 (2) Åθ = 2.5–29.5°
b = 7.8107 (8) ŵ = 1.87 mm1
c = 19.000 (7) ÅT = 273 K
β = 116.004 (2)°Plane, colorless
V = 2548.4 (10) Å30.40 × 0.33 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
2593 independent reflections
Radiation source: fine-focus sealed tube2537 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
φ and ω scansθmax = 26.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2324
Tmin = 0.491, Tmax = 0.675k = 99
8401 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0526P)2 + 3.3178P]
where P = (Fo2 + 2Fc2)/3
2593 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Ce(NO3)4(C10H8N2)2]V = 2548.4 (10) Å3
Mr = 700.53Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.106 (2) ŵ = 1.87 mm1
b = 7.8107 (8) ÅT = 273 K
c = 19.000 (7) Å0.40 × 0.33 × 0.21 mm
β = 116.004 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
2593 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2537 reflections with I > 2σ(I)
Tmin = 0.491, Tmax = 0.675Rint = 0.015
8401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.07Δρmax = 0.42 e Å3
2593 reflectionsΔρmin = 0.54 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce11.00000.33854 (2)0.75000.03153 (9)
O11.09207 (13)0.4419 (3)0.88993 (15)0.0569 (6)
O21.0829 (2)0.4126 (4)1.00244 (16)0.0779 (8)
O30.99750 (16)0.3044 (3)0.88522 (16)0.0573 (6)
O40.92877 (16)0.0719 (3)0.66851 (18)0.0669 (7)
O50.81807 (17)0.0040 (4)0.65285 (18)0.0730 (8)
O60.87813 (15)0.2149 (3)0.72864 (16)0.0571 (6)
N11.05818 (17)0.3858 (4)0.92901 (17)0.0504 (6)
N20.87324 (16)0.0902 (3)0.68201 (17)0.0485 (6)
N30.93573 (16)0.6018 (4)0.78013 (17)0.0477 (6)
C10.9748 (2)0.7369 (4)0.8261 (2)0.0500 (7)
H11.02630.75120.83480.060*
C20.9466 (2)0.8530 (4)0.8604 (2)0.0475 (7)
H20.97680.94340.89010.057*
C30.8644 (2)0.5861 (5)0.7672 (2)0.0526 (7)
H30.83440.49910.73440.063*
C40.8317 (2)0.6939 (4)0.8003 (2)0.0496 (7)
H40.78000.67740.79040.060*
C50.8740 (2)0.8308 (3)0.8494 (2)0.0419 (7)
C60.84260 (17)0.9442 (4)0.89068 (17)0.0421 (6)
C70.7947 (2)0.8785 (4)0.9185 (2)0.0478 (7)
H70.78170.76290.91260.057*
C80.7657 (2)0.9864 (4)0.9555 (2)0.0531 (7)
H80.73250.94140.97490.064*
N40.7822 (2)1.1529 (3)0.9655 (2)0.0545 (7)
C90.8276 (3)1.2173 (5)0.9398 (3)0.0669 (10)
H90.83891.33370.94630.080*
C100.8600 (2)1.1175 (5)0.9028 (3)0.0609 (10)
H100.89421.16610.88550.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.03102 (14)0.02770 (13)0.04625 (14)0.0000.02651 (10)0.000
O10.0442 (12)0.0573 (14)0.0749 (15)0.0090 (10)0.0314 (11)0.0003 (12)
O20.097 (2)0.078 (2)0.0546 (14)0.0085 (18)0.0294 (14)0.0023 (14)
O30.0553 (15)0.0614 (13)0.0687 (15)0.0134 (12)0.0397 (13)0.0034 (12)
O40.0621 (16)0.0520 (14)0.105 (2)0.0035 (12)0.0533 (15)0.0174 (14)
O50.0616 (16)0.0654 (16)0.0906 (19)0.0287 (13)0.0321 (14)0.0171 (14)
O60.0552 (14)0.0488 (12)0.0831 (16)0.0098 (11)0.0449 (13)0.0164 (12)
N10.0530 (16)0.0455 (13)0.0567 (15)0.0008 (13)0.0277 (13)0.0032 (12)
N20.0481 (15)0.0409 (13)0.0605 (15)0.0058 (12)0.0277 (12)0.0031 (12)
N30.0499 (15)0.0440 (14)0.0641 (15)0.0027 (12)0.0386 (13)0.0034 (12)
C10.0507 (18)0.0407 (16)0.077 (2)0.0029 (13)0.0447 (16)0.0034 (15)
C20.0475 (18)0.0409 (16)0.069 (2)0.0060 (12)0.0389 (17)0.0078 (13)
C30.0469 (17)0.0502 (18)0.0668 (19)0.0022 (14)0.0306 (15)0.0151 (15)
C40.0412 (17)0.0516 (16)0.0623 (18)0.0015 (13)0.0284 (15)0.0098 (15)
C50.0434 (17)0.0405 (16)0.0520 (16)0.0037 (11)0.0302 (14)0.0013 (11)
C60.0404 (14)0.0412 (14)0.0527 (15)0.0023 (12)0.0278 (12)0.0028 (12)
C70.0444 (17)0.0458 (15)0.0639 (18)0.0028 (13)0.0336 (15)0.0062 (14)
C80.0475 (17)0.0573 (19)0.0694 (19)0.0006 (14)0.0393 (15)0.0059 (16)
N40.0531 (18)0.0536 (18)0.0732 (19)0.0049 (11)0.0428 (16)0.0106 (12)
C90.079 (3)0.0452 (18)0.105 (3)0.0039 (18)0.068 (2)0.015 (2)
C100.072 (2)0.0422 (16)0.099 (3)0.0057 (16)0.065 (2)0.0103 (18)
Geometric parameters (Å, º) top
Ce1—O12.591 (3)C1—C21.359 (4)
Ce1—O32.604 (3)C1—H10.9300
Ce1—O42.596 (3)C2—C51.319 (5)
Ce1—O62.385 (2)C2—H20.9300
Ce1—N32.585 (3)C3—C41.356 (4)
Ce1—O6i2.386 (2)C3—H30.9300
Ce1—N3i2.585 (3)C4—C51.417 (5)
Ce1—O1i2.591 (3)C4—H40.9300
Ce1—O4i2.596 (3)C5—C61.474 (4)
Ce1—O3i2.604 (3)C6—C71.344 (4)
Ce1—N2i2.925 (3)C6—C101.388 (5)
O1—N11.258 (4)C7—C81.362 (4)
O2—N11.279 (4)C7—H70.9300
O3—N11.263 (4)C8—N41.332 (4)
O4—N21.204 (4)C8—H80.9300
O5—N21.203 (4)N4—C91.272 (5)
O6—N21.292 (4)C9—C101.368 (5)
N3—C31.280 (4)C9—H90.9300
N3—C11.365 (5)C10—H100.9300
O1—Ce1—O346.95 (8)O1—Ce1—N2i72.25 (8)
O1—Ce1—O4143.55 (9)O4—Ce1—N2i81.22 (8)
O1—Ce1—O6118.27 (8)O4i—Ce1—N2i24.28 (8)
O3—Ce1—O4105.94 (9)O3—Ce1—N2i82.31 (9)
O3—Ce1—O671.80 (9)O3i—Ce1—N2i89.89 (8)
O4—Ce1—O649.94 (8)N1—O1—Ce1101.74 (19)
O1—Ce1—N372.52 (9)N1—O3—Ce1100.94 (18)
O3—Ce1—N369.32 (9)N2—O4—Ce193.31 (19)
O4—Ce1—N3126.48 (9)N2—O6—Ce1101.16 (18)
O6—Ce1—N380.59 (9)O1—N1—O3110.4 (3)
O6—Ce1—O6i132.25 (13)O1—N1—O2123.1 (3)
O6—Ce1—N3i143.85 (9)O3—N1—O2126.5 (3)
O6i—Ce1—N3i80.59 (9)O5—N2—O4120.3 (3)
O6i—Ce1—N3143.85 (10)O5—N2—O6124.2 (3)
N3i—Ce1—N374.59 (12)O4—N2—O6115.5 (3)
O6—Ce1—O1i77.21 (9)C3—N3—C1115.8 (3)
O6i—Ce1—O1i118.27 (8)C3—N3—Ce1116.8 (2)
N3i—Ce1—O1i72.52 (9)C1—N3—Ce1125.2 (2)
N3—Ce1—O1i78.74 (9)C2—C1—N3127.0 (3)
O6i—Ce1—O177.21 (9)C2—C1—H1116.5
N3i—Ce1—O178.74 (9)N3—C1—H1116.5
O1i—Ce1—O1143.71 (12)C5—C2—C1116.6 (3)
O6i—Ce1—O489.66 (9)C5—C2—H2121.7
N3i—Ce1—O4133.00 (9)C1—C2—H2121.7
O1i—Ce1—O472.27 (9)N3—C3—C4121.3 (3)
O6—Ce1—O4i89.66 (9)N3—C3—H3119.3
O6i—Ce1—O4i49.94 (8)C4—C3—H3119.3
N3i—Ce1—O4i126.48 (9)C3—C4—C5121.9 (3)
N3—Ce1—O4i133.00 (9)C3—C4—H4119.1
O1i—Ce1—O4i143.55 (9)C5—C4—H4119.1
O1—Ce1—O4i72.27 (9)C2—C5—C4117.4 (3)
O4—Ce1—O4i73.30 (14)C2—C5—C6118.8 (3)
O6i—Ce1—O3103.27 (9)C4—C5—C6123.8 (3)
N3i—Ce1—O3121.06 (8)C7—C6—C10117.6 (3)
O1i—Ce1—O3138.28 (8)C7—C6—C5119.1 (3)
O4i—Ce1—O363.97 (9)C10—C6—C5123.3 (3)
O6—Ce1—O3i103.27 (9)C6—C7—C8117.9 (3)
O6i—Ce1—O3i71.80 (9)C6—C7—H7121.1
N3i—Ce1—O3i69.32 (9)C8—C7—H7121.1
N3—Ce1—O3i121.06 (8)N4—C8—C7123.7 (3)
O1i—Ce1—O3i46.95 (8)N4—C8—H8118.2
O1—Ce1—O3i138.27 (8)C7—C8—H8118.2
O4—Ce1—O3i63.97 (9)C9—N4—C8119.3 (3)
O4i—Ce1—O3i105.94 (9)N4—C9—C10120.8 (4)
O3—Ce1—O3i168.25 (12)N4—C9—H9119.6
O6—Ce1—N2i111.37 (9)C10—C9—H9119.6
O6i—Ce1—N2i25.69 (8)C9—C10—C6120.7 (3)
N3i—Ce1—N2i104.09 (8)C9—C10—H10119.6
N3—Ce1—N2i144.26 (9)C6—C10—H10119.6
O1i—Ce1—N2i135.89 (7)
Symmetry code: (i) x+2, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Ce(NO3)4(C10H8N2)2]
Mr700.53
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)19.106 (2), 7.8107 (8), 19.000 (7)
β (°) 116.004 (2)
V3)2548.4 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.87
Crystal size (mm)0.40 × 0.33 × 0.21
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.491, 0.675
No. of measured, independent and
observed [I > 2σ(I)] reflections
8401, 2593, 2537
Rint0.015
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.074, 1.07
No. of reflections2593
No. of parameters186
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.54

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996), SHELXTL.

Selected geometric parameters (Å, º) top
Ce1—O12.591 (3)Ce1—O62.385 (2)
Ce1—O32.604 (3)Ce1—N32.585 (3)
Ce1—O42.596 (3)
O1—Ce1—O346.95 (8)O4—Ce1—O649.94 (8)
O1—Ce1—O4143.55 (9)O1—Ce1—N372.52 (9)
O1—Ce1—O6118.27 (8)O3—Ce1—N369.32 (9)
O3—Ce1—O4105.94 (9)O4—Ce1—N3126.48 (9)
O3—Ce1—O671.80 (9)O6—Ce1—N380.59 (9)
Table 1. Hydrogen-bond geometry (Å, °). top
D—H···AD—HH···AD···AD—H···A
C3—H3···O60.932.3913.030 (4)125.71
C8—H8···O1i0.932.4513.009 (3)118.54
C9—H9···O2ii0.932.4153.292 (4)157.25
C10—H10···O3iii0.932.2523.149 (3)161.36
Symmetry codes: (i) x - 1/2, y + 1/2, z; (ii) -x + 2, -y + 2, -z + 2; (iii) x, y + 1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds