Download citation
Download citation
link to html
The title compound, [Co(C7H5O3)2(C6H6N2O)2(H2O)2], forms a three-dimensional hydrogen-bonded supra­molecular structure. The CoII ion is in an octa­hedral coordination environment comprising two pyridyl N atoms, two carboxyl­ate O atoms and two O atoms from water mol­ecules. Inter­molecular N—H...O and O—H...O hydrogen bonds produce R22(8), R22(12) and R22(14) rings, which lead to two-dimensional chains. An extensive three-dimensional supra­molecular network of C—H...O, N—H...O and O—H...O hydrogen bonds and C—H...π inter­actions is responsible for crystal structure stabilization. This study is an example of the construction of a supra­molecular assembly based on hydrogen bonds in mixed-ligand metal complexes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108029521/hj3085sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108029521/hj3085Isup2.hkl
Contains datablock I

CCDC reference: 707191

Comment top

Metal–organic supramolecular complexes with various fascinating topologies have been studied widely for their versatile chemical and physical properties and potential applications as functional materials (Janiak, 2003; Kitagawa et al., 2004; Yaghi et al., 2003). Self-assembly based on molecular building blocks has become an effective approach to construct these functional materials. In the development of supramolecular chemistry, hydrogen-bonding and ππ interactions, acting as the two main driving forces, play an important role in the self-assembly of multi-dimensional metal–organic supramolecular frameworks or networks (Graham & Pike, 2000; Mitzi et al., 1995). Some interesting coordination polymers assembled with 4,4'-bipyridine (bipy) have been reported, showing various structural motifs, including two-dimensional layers (Carlucci et al., 1997; Tong et al., 1998) and three-dimensional nets (Lu et al., 1998; Hagrman et al., 1998; Kondo et al., 1999; Greve et al., 2003; Zhang et al., 1999; Şahin et al., 2007). We report here the structure of the title complex, (I), in which hydrogen-bond interactions lead to a three-dimensional supramolecular network.

The molecular structure of (I) and the atom-labelling scheme are shown in Fig. 1. The CoII ion is coordinated by two O atoms from two identical carboxylate groups, two O atoms from two water molecules and two pyridyl N atoms. The geometry around the CoII ion (Table 1) is that of a slightly distorted octahedron. The distortion arises from the N1—Co1—N2 axis, which is not perfectly perpendicular to the coordination plane (O1/O2/O3/O4/Co1). The significant difference between the Co—O bond distances in the equatorial plane and the Co—N bond distances in the axial positions has also been observed in another cobalt complex (Şahin et al., 2007).

Molecules are linked by intermolecular hydrogen bonding, and we employ graph-set notation (Bernstein et al., 1995) to describe the patterns of hydrogen bonding. Molecules of (I) are linked into sheets by a combination of C—H···O, O—H···O and N—H···O hydrogen bonds (Table 2). Within the selected asymmetric unit, intramolecular O—H···O hydrogen bonds define S21(10) and S(6) motifs (Fig. 1). Water atom O1 in the molecule at (x, y, z) acts as hydrogen-bond donor, via atoms H1A and H1B, respectively, to atom O5 at (x + 1, y, z) and atom O10 at (x + 1, y, z), so forming a C(6)C(8)[R22(12)] chain of rings running parallel to the [100] direction. Similarly, water atom O2 in the reference molecule at (x, y, z) acts as hydrogen-bond donor, via atom H2B, to atom O9 in the molecule at (x - 1, y, z), so forming a C(8) chain running parallel to the [100] direction. The combination of the C(6) and C(8) chains generates a chain of edge-fused R22(14) rings running parallel to the [100] direction (Fig. 2). Amino atom N4 in the reference molecule at (x, y, z) acts as hydrogen-bond donor, via atom H4A, to atom O10 in the molecule at (x + 1, y, z - 1), so forming a C(12) chain running parallel to the [101] direction (Fig. 3). Amino atom N3 in the molecule at (x, y, z) acts as hydrogen-bond donor, via atom H3A, to atom O9 in the molecule at (x - 1, y, z + 1), so forming a C(12) chain running parallel to the [101] direction. The combination of C(12) chains generates a chain of edge-fused R22(8) rings running parallel to the [101] direction (Fig. 3).

Fig. 4 shows the way in which amino atom N4, hydroxyl atom O6, atom C18 and carboxylate atom O5 enter into intermolecular hydrogen-bonding interactions. As a result, amino atom N4 in the reference molecule at (x, y, z) acts as hydrogen-bond donor, via atom H4B, to atom O6 in the molecule at (x, y, z - 1), so forming a C(12) chain running parallel to the [001] direction. At the same time, atom C18 in the reference molecule at (x, y, z) acts as hydrogen-bond donor, via atom H18, to atom O5 in the molecule at (-x, y - 1/2, -z), so forming a C(10) chain running parallel to the [010] direction. The combination of the C(10) and C(12) chains generates a chain of edge-fused R44(40) rings parallel to the bc plane (Fig. 4).

Compound (I) also contains two intermolecular C—H···π interactions. In the first, atom C9 in the molecule at (x, y, z) acts as hydrogen-bond donor to the C21–C26 benzene ring in the molecule at (x, y, z - 1), so forming a chain running parallel to the [001] direction. In the second, atom C3 in the molecule at (x, y, z) acts as hydrogen-bond donor to the C14–C19 benzene ring in the molecule at (x, y, z + 1), so forming a chain running parallel to the [001] direction. Details of these interactions are given in Table 2. The combination of C—H···π interactions defines an R22(20) ring pattern (Fig. 5).

The combination of the chains along [100], [101], [010] and [001] suffices to generate a three-dimensional structure of considerable complexity.

Related literature top

For related literature, see: Bernstein et al. (1995); Carlucci et al. (1997); Graham & Pike (2000); Greve et al. (2003); Hagrman et al. (1998); Janiak (2003); Kitagawa et al. (2004); Kondo et al. (1999); Lu et al. (1998); Mitzi et al. (1995); Sheldrick (2008); Tong et al. (1998); Yaghi et al. (2003); Zhang et al. (1999); Şahin et al. (2007).

Experimental top

In the first step, salicylic acid sodium salt was prepared, and cobalt salicylate salt was synthesized from Na(SA) (SA = salicylic acid) salt. A solution of Co(SA)2.nH2O [In what solvent?] was left for 15 d at room temperature for crystallization. In the second step, a solution of nicotinamide (2 mmol) in distilled water (30 ml) was added dropwise to a stirred solution of Co(SA)2.nH2O (1 mmol) in hot distilled water (50 ml). The resulting solution was heated to 323 K in a temperature-controlled bath and stirred for 4 h, and then cooled to room temperature and left for 15–17 d for crystallization. The crystals which formed were filtered off, washed with cold water and acetone and dried in vacuo to give brown crystals in a yield of 84% (0.51 g). Analysis, found: C 50.38, H 4.12%; calculated for C26H28N4O10Co: C 50.86, H 4.57%.

Refinement top

H atoms bonded to C and N atoms were included in their expected positions and allowed to ride, with C—H and N—H distances restrained to 0.93 and 0.86 Å, respectively, and with Uiso(H) = 1.2Ueq(C,N). Water H atoms were located in a difference map and refined subject to a DFIX (SHELXL97; Sheldrick, 2008) restraint of O—H = 0.83 (2) Å. The H atoms of the hydroxy groups (O6 and O8) were allowed for with a fixed O—H distance of 0.82 Å [Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of R22(12) and R22(14) rings. Hydrogen bonds are indicated by dashed lines. H atoms not involved in these interactions have been omitted for clarity. (Symmetry codes as in Table 2).
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of a R22(8) dimer. Hydrogen bonds are indicated by dashed lines. H atoms not involved in these interactions have been omitted for clarity. (Symmetry codes as in Table 2).
[Figure 4] Fig. 4. Part of the crystal structure of (I), showing the formation of a chain of edge-fused R44(40) rings. Hydrogen bonds are indicated by dashed lines. For the sake of clarity, H atoms not involved in the motif shown have been omitted. [Symmetry codes: (iii) x, y, z - 1; (vi) -x, y - 1/2, -z; (vii) x, y, z + 1; (viii) -x, y + 1/2, -z.]
[Figure 5] Fig. 5. Part of the crystal structure of (I), showing the formation of a chain along [001] generated by the C—H···π interactions (dashed lines). For the sake of clarity, H atoms not involved in the motif shown have been omitted. [Symmetry codes: (iii) x, y, z - 1; (vii) x, y, z + 1.]
trans-Diaquabis(nicotinamide-κN)bis(salicylato-κO)cobalt(II) top
Crystal data top
[Co(C7H5O3)2(C6H6N2O)2(H2O)2]F(000) = 634
Mr = 613.44Dx = 1.530 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P2ybCell parameters from 9880 reflections
a = 7.0484 (4) Åθ = 2.1–27.3°
b = 19.4249 (7) ŵ = 0.71 mm1
c = 10.3331 (5) ÅT = 296 K
β = 109.774 (4)°Prism, brown
V = 1331.33 (11) Å30.48 × 0.39 × 0.36 mm
Z = 2
Data collection top
Stoe IPDSII
diffractometer
5360 independent reflections
Radiation source: fine-focus sealed tube4725 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.1°
ω scansh = 88
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2424
Tmin = 0.549, Tmax = 0.811l = 1211
9880 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.064P)2 + 0.1543P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
5360 reflectionsΔρmax = 0.38 e Å3
383 parametersΔρmin = 0.67 e Å3
7 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (16)
Crystal data top
[Co(C7H5O3)2(C6H6N2O)2(H2O)2]V = 1331.33 (11) Å3
Mr = 613.44Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.0484 (4) ŵ = 0.71 mm1
b = 19.4249 (7) ÅT = 296 K
c = 10.3331 (5) Å0.48 × 0.39 × 0.36 mm
β = 109.774 (4)°
Data collection top
Stoe IPDSII
diffractometer
5360 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
4725 reflections with I > 2σ(I)
Tmin = 0.549, Tmax = 0.811Rint = 0.061
9880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115Δρmax = 0.38 e Å3
S = 1.05Δρmin = 0.67 e Å3
5360 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
383 parametersAbsolute structure parameter: 0.012 (16)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4559 (7)0.1501 (2)0.4983 (4)0.0507 (9)
H10.55450.14130.45920.061*
C20.4618 (8)0.1144 (2)0.6136 (5)0.0651 (12)
H20.56140.08170.65140.078*
C30.3163 (7)0.1279 (2)0.6735 (4)0.0575 (10)
H30.31650.10400.75160.069*
C40.1726 (6)0.17694 (19)0.6160 (4)0.0454 (8)
C50.1756 (6)0.2094 (2)0.4974 (4)0.0464 (8)
H50.07560.24160.45620.056*
C60.0127 (7)0.1981 (2)0.6706 (4)0.0504 (9)
C70.1489 (6)0.3403 (2)0.0040 (4)0.0485 (8)
H70.05090.35170.03410.058*
C80.1330 (7)0.3674 (2)0.1314 (4)0.0553 (10)
H80.02610.39610.17790.066*
C90.2786 (7)0.3509 (2)0.1876 (4)0.0559 (10)
H90.27090.36820.27310.067*
C100.4367 (6)0.3083 (2)0.1158 (4)0.0451 (8)
C110.4400 (6)0.2837 (2)0.0116 (4)0.0462 (8)
H110.54610.25540.06120.055*
C120.6042 (6)0.2856 (2)0.1645 (4)0.0504 (9)
C130.3227 (6)0.10799 (19)0.1328 (4)0.0482 (9)
C140.4161 (6)0.06376 (19)0.0500 (4)0.0457 (8)
C150.5935 (7)0.0848 (2)0.0293 (4)0.0513 (9)
H150.65700.12510.07060.062*
C160.6751 (8)0.0470 (2)0.0509 (5)0.0605 (10)
H160.79130.06200.06580.073*
C170.5833 (8)0.0134 (2)0.1092 (5)0.0653 (12)
H170.64020.03950.16210.078*
C180.4109 (9)0.0358 (2)0.0912 (5)0.0682 (13)
H180.34900.07600.13370.082*
C190.3271 (7)0.0020 (2)0.0086 (5)0.0584 (10)
C200.0543 (6)0.36403 (18)0.3307 (4)0.0434 (8)
C210.0796 (6)0.42063 (19)0.4346 (4)0.0472 (8)
C220.0864 (7)0.4443 (2)0.4651 (5)0.0613 (11)
H220.21290.42560.41940.074*
C230.0667 (9)0.4950 (3)0.5620 (5)0.0748 (14)
H230.17870.50970.58260.090*
C240.1183 (11)0.5234 (3)0.6277 (6)0.0817 (16)
H240.13060.55830.69160.098*
C250.2865 (9)0.5013 (2)0.6009 (5)0.0704 (13)
H250.41190.52060.64740.085*
C260.2676 (7)0.4494 (2)0.5030 (4)0.0518 (9)
N10.3147 (5)0.19697 (16)0.4394 (3)0.0457 (7)
N20.2978 (5)0.29893 (16)0.0659 (3)0.0446 (7)
N30.0194 (6)0.1745 (2)0.7931 (4)0.0692 (11)
H3A0.07060.18710.82740.083*
H3B0.11380.14670.83790.083*
N40.6131 (6)0.3132 (2)0.2798 (4)0.0673 (10)
H4A0.70430.29990.31250.081*
H4B0.52780.34430.32190.081*
O10.6036 (4)0.28346 (16)0.3536 (3)0.0541 (7)
H1A0.696 (6)0.297 (3)0.327 (5)0.081*
H1B0.654 (6)0.255 (2)0.413 (4)0.081*
O20.0064 (5)0.21115 (18)0.1713 (3)0.0585 (7)
H2A0.023 (8)0.1710 (14)0.149 (6)0.088*
H2B0.107 (5)0.222 (2)0.121 (5)0.088*
O30.4119 (4)0.16219 (13)0.1839 (3)0.0490 (6)
O40.2184 (4)0.34197 (14)0.3174 (3)0.0490 (6)
O50.1124 (4)0.34022 (15)0.2679 (3)0.0541 (6)
O60.4403 (5)0.42729 (19)0.4848 (4)0.0740 (9)
H60.41400.39560.42910.111*
O70.1586 (6)0.08797 (17)0.1435 (4)0.0811 (11)
O80.1580 (6)0.02228 (19)0.0089 (5)0.0892 (12)
H8A0.12310.00400.05890.134*
O90.7238 (5)0.2410 (2)0.1014 (3)0.0636 (8)
O100.1223 (4)0.2379 (2)0.6058 (3)0.0665 (9)
Co10.30510 (7)0.24951 (2)0.25339 (4)0.04027 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.060 (2)0.051 (2)0.051 (2)0.0054 (17)0.0324 (19)0.0034 (17)
C20.078 (3)0.065 (3)0.064 (3)0.023 (2)0.039 (2)0.018 (2)
C30.067 (3)0.065 (3)0.050 (2)0.009 (2)0.031 (2)0.0169 (19)
C40.054 (2)0.050 (2)0.0399 (17)0.0034 (16)0.0256 (17)0.0005 (15)
C50.056 (2)0.050 (2)0.0399 (17)0.0080 (17)0.0253 (17)0.0086 (15)
C60.056 (2)0.060 (2)0.0411 (19)0.0030 (18)0.0241 (18)0.0041 (17)
C70.055 (2)0.051 (2)0.0478 (19)0.0017 (17)0.0276 (18)0.0010 (16)
C80.063 (3)0.057 (2)0.049 (2)0.011 (2)0.023 (2)0.0087 (18)
C90.069 (3)0.062 (2)0.0425 (19)0.003 (2)0.027 (2)0.0114 (18)
C100.053 (2)0.050 (2)0.0391 (17)0.0033 (16)0.0253 (16)0.0000 (15)
C110.056 (2)0.0516 (19)0.0408 (18)0.0016 (17)0.0299 (17)0.0014 (15)
C120.063 (2)0.058 (2)0.0424 (19)0.003 (2)0.0338 (19)0.0010 (17)
C130.058 (2)0.046 (2)0.052 (2)0.0017 (17)0.0331 (19)0.0050 (16)
C140.055 (2)0.0384 (18)0.049 (2)0.0025 (16)0.0254 (18)0.0001 (15)
C150.060 (2)0.047 (2)0.054 (2)0.0014 (17)0.0286 (19)0.0014 (16)
C160.071 (3)0.061 (3)0.057 (2)0.007 (2)0.032 (2)0.002 (2)
C170.090 (4)0.056 (3)0.054 (2)0.020 (2)0.029 (2)0.0035 (19)
C180.087 (4)0.045 (2)0.066 (3)0.003 (2)0.017 (3)0.010 (2)
C190.063 (3)0.045 (2)0.068 (3)0.0025 (19)0.024 (2)0.0014 (19)
C200.052 (2)0.0411 (18)0.0450 (18)0.0007 (15)0.0264 (17)0.0051 (14)
C210.060 (2)0.0447 (19)0.0442 (19)0.0038 (17)0.0273 (18)0.0024 (15)
C220.067 (3)0.066 (3)0.058 (2)0.011 (2)0.030 (2)0.007 (2)
C230.088 (4)0.081 (3)0.064 (3)0.020 (3)0.037 (3)0.013 (2)
C240.129 (5)0.058 (3)0.061 (3)0.016 (3)0.037 (3)0.014 (2)
C250.098 (4)0.055 (2)0.057 (2)0.009 (2)0.023 (3)0.011 (2)
C260.063 (2)0.051 (2)0.049 (2)0.0010 (18)0.029 (2)0.0022 (17)
N10.0539 (19)0.0493 (17)0.0427 (15)0.0043 (14)0.0280 (14)0.0061 (13)
N20.0513 (18)0.0483 (17)0.0426 (15)0.0005 (14)0.0270 (14)0.0016 (13)
N30.074 (3)0.098 (3)0.051 (2)0.017 (2)0.042 (2)0.0243 (19)
N40.078 (3)0.088 (3)0.0505 (19)0.016 (2)0.0406 (19)0.0195 (18)
O10.0514 (16)0.0644 (17)0.0521 (16)0.0047 (14)0.0248 (13)0.0077 (13)
O20.0491 (16)0.0667 (18)0.0598 (17)0.0000 (14)0.0186 (13)0.0014 (15)
O30.0603 (17)0.0454 (14)0.0523 (15)0.0019 (12)0.0332 (13)0.0053 (11)
O40.0527 (15)0.0508 (14)0.0528 (15)0.0008 (12)0.0300 (12)0.0075 (12)
O50.0536 (16)0.0557 (15)0.0600 (16)0.0026 (13)0.0283 (14)0.0040 (13)
O60.0613 (19)0.086 (2)0.077 (2)0.0092 (17)0.0274 (18)0.0200 (18)
O70.082 (2)0.0589 (18)0.129 (3)0.0129 (17)0.070 (2)0.015 (2)
O80.083 (3)0.061 (2)0.139 (4)0.0217 (18)0.058 (3)0.022 (2)
O90.0727 (18)0.079 (2)0.0546 (14)0.0161 (18)0.0420 (14)0.0117 (16)
O100.0638 (17)0.099 (3)0.0460 (13)0.0195 (18)0.0305 (13)0.0125 (16)
Co10.0497 (2)0.0426 (2)0.03727 (19)0.0004 (2)0.02618 (17)0.0007 (2)
Geometric parameters (Å, º) top
C1—N11.334 (5)C17—C181.361 (7)
C1—C21.367 (6)C17—H170.9300
C1—H10.9300C18—C191.399 (6)
C2—C31.390 (6)C18—H180.9300
C2—H20.9300C19—O81.350 (5)
C3—C41.370 (6)C20—O51.225 (5)
C3—H30.9300C20—O41.283 (4)
C4—C51.385 (5)C20—C211.504 (5)
C4—C61.479 (5)C21—C221.389 (6)
C5—N11.333 (4)C21—C261.391 (6)
C5—H50.9300C22—C231.376 (6)
C6—O101.233 (5)C22—H220.9300
C6—N31.332 (5)C23—C241.367 (9)
C7—N21.326 (5)C23—H230.9300
C7—C81.386 (5)C24—C251.374 (8)
C7—H70.9300C24—H240.9300
C8—C91.377 (6)C25—C261.402 (6)
C8—H80.9300C25—H250.9300
C9—C101.385 (6)C26—O61.363 (5)
C9—H90.9300N1—Co12.157 (3)
C10—C111.393 (5)N2—Co12.147 (3)
C10—C121.499 (5)N3—H3A0.8600
C11—N21.337 (4)N3—H3B0.8600
C11—H110.9300N4—H4A0.8600
C12—O91.231 (5)N4—H4B0.8600
C12—N41.327 (5)O1—Co12.112 (3)
C13—O31.248 (5)O1—H1A0.83 (5)
C13—O71.260 (5)O1—H1B0.81 (4)
C13—C141.512 (5)O2—Co12.121 (3)
C14—C191.393 (6)O2—H2A0.834 (19)
C14—C151.399 (5)O2—H2B0.82 (4)
C15—C161.371 (6)O3—Co12.079 (3)
C15—H150.9300O4—Co12.076 (3)
C16—C171.376 (7)O6—H60.8200
C16—H160.9300O8—H8A0.8200
N1—C1—C2122.8 (4)O5—C20—C21121.0 (3)
N1—C1—H1118.6O4—C20—C21115.2 (3)
C2—C1—H1118.6C22—C21—C26118.8 (4)
C1—C2—C3118.9 (4)C22—C21—C20119.9 (4)
C1—C2—H2120.6C26—C21—C20121.3 (3)
C3—C2—H2120.6C23—C22—C21121.1 (5)
C4—C3—C2119.1 (4)C23—C22—H22119.5
C4—C3—H3120.5C21—C22—H22119.5
C2—C3—H3120.5C24—C23—C22119.6 (5)
C3—C4—C5118.0 (3)C24—C23—H23120.2
C3—C4—C6125.0 (3)C22—C23—H23120.2
C5—C4—C6116.9 (4)C23—C24—C25121.1 (4)
N1—C5—C4123.3 (4)C23—C24—H24119.4
N1—C5—H5118.4C25—C24—H24119.4
C4—C5—H5118.4C24—C25—C26119.4 (5)
O10—C6—N3120.3 (4)C24—C25—H25120.3
O10—C6—C4121.0 (3)C26—C25—H25120.3
N3—C6—C4118.7 (4)O6—C26—C21123.0 (4)
N2—C7—C8122.8 (3)O6—C26—C25117.1 (4)
N2—C7—H7118.6C21—C26—C25119.9 (4)
C8—C7—H7118.6C5—N1—C1117.9 (3)
C9—C8—C7118.7 (4)C5—N1—Co1120.6 (3)
C9—C8—H8120.7C1—N1—Co1121.5 (2)
C7—C8—H8120.7C7—N2—C11118.3 (3)
C8—C9—C10119.5 (3)C7—N2—Co1122.4 (2)
C8—C9—H9120.3C11—N2—Co1119.2 (3)
C10—C9—H9120.3C6—N3—H3A120.0
C9—C10—C11117.7 (3)C6—N3—H3B120.0
C9—C10—C12125.3 (3)H3A—N3—H3B120.0
C11—C10—C12117.0 (4)C12—N4—H4A120.0
N2—C11—C10123.0 (4)C12—N4—H4B120.0
N2—C11—H11118.5H4A—N4—H4B120.0
C10—C11—H11118.5Co1—O1—H1A134 (4)
O9—C12—N4121.9 (3)Co1—O1—H1B105 (3)
O9—C12—C10120.3 (3)H1A—O1—H1B106 (3)
N4—C12—C10117.7 (4)Co1—O2—H2A103 (4)
O3—C13—O7124.7 (3)Co1—O2—H2B142 (4)
O3—C13—C14117.7 (3)H2A—O2—H2B105 (3)
O7—C13—C14117.5 (4)C13—O3—Co1130.1 (3)
C19—C14—C15118.7 (4)C20—O4—Co1134.1 (3)
C19—C14—C13121.1 (4)C26—O6—H6109.5
C15—C14—C13120.2 (3)C19—O8—H8A109.5
C16—C15—C14121.0 (4)O4—Co1—O3174.58 (11)
C16—C15—H15119.5O4—Co1—O185.72 (12)
C14—C15—H15119.5O3—Co1—O190.40 (12)
C15—C16—C17119.3 (5)O4—Co1—O294.12 (12)
C15—C16—H16120.3O3—Co1—O290.11 (12)
C17—C16—H16120.3O1—Co1—O2174.40 (12)
C18—C17—C16121.4 (4)O4—Co1—N288.92 (11)
C18—C17—H17119.3O3—Co1—N287.38 (11)
C16—C17—H17119.3O1—Co1—N291.06 (11)
C17—C18—C19119.8 (4)O2—Co1—N294.53 (12)
C17—C18—H18120.1O4—Co1—N192.82 (11)
C19—C18—H18120.1O3—Co1—N190.90 (11)
O8—C19—C14122.1 (4)O1—Co1—N189.14 (12)
O8—C19—C18118.2 (4)O2—Co1—N185.28 (13)
C14—C19—C18119.7 (4)N2—Co1—N1178.26 (12)
O5—C20—O4123.7 (3)
N1—C1—C2—C30.8 (7)C23—C24—C25—C261.0 (8)
C1—C2—C3—C40.6 (7)C22—C21—C26—O6176.7 (4)
C2—C3—C4—C52.0 (7)C20—C21—C26—O62.3 (6)
C2—C3—C4—C6178.2 (4)C22—C21—C26—C250.1 (6)
C3—C4—C5—N12.2 (6)C20—C21—C26—C25178.9 (4)
C6—C4—C5—N1177.9 (4)C24—C25—C26—O6177.1 (5)
C3—C4—C6—O10173.1 (4)C24—C25—C26—C210.4 (7)
C5—C4—C6—O106.7 (6)C4—C5—N1—C10.9 (6)
C3—C4—C6—N38.4 (7)C4—C5—N1—Co1179.4 (3)
C5—C4—C6—N3171.7 (4)C2—C1—N1—C50.6 (6)
N2—C7—C8—C90.3 (7)C2—C1—N1—Co1177.8 (4)
C7—C8—C9—C100.3 (7)C8—C7—N2—C111.1 (6)
C8—C9—C10—C110.2 (6)C8—C7—N2—Co1173.8 (3)
C8—C9—C10—C12179.5 (4)C10—C11—N2—C71.2 (6)
C9—C10—C11—N20.6 (6)C10—C11—N2—Co1173.9 (3)
C12—C10—C11—N2178.7 (4)O7—C13—O3—Co118.6 (6)
C9—C10—C12—O9170.9 (4)C14—C13—O3—Co1160.2 (3)
C11—C10—C12—O98.4 (6)O5—C20—O4—Co123.3 (6)
C9—C10—C12—N46.4 (6)C21—C20—O4—Co1154.5 (2)
C11—C10—C12—N4174.3 (4)C20—O4—Co1—O1161.6 (3)
O3—C13—C14—C19179.0 (4)C20—O4—Co1—O212.8 (3)
O7—C13—C14—C192.0 (6)C20—O4—Co1—N2107.2 (3)
O3—C13—C14—C151.8 (6)C20—O4—Co1—N172.7 (3)
O7—C13—C14—C15177.1 (4)C13—O3—Co1—O1166.1 (3)
C19—C14—C15—C162.3 (6)C13—O3—Co1—O28.3 (3)
C13—C14—C15—C16176.9 (4)C13—O3—Co1—N2102.9 (3)
C14—C15—C16—C171.5 (7)C13—O3—Co1—N176.9 (3)
C15—C16—C17—C181.3 (7)C7—N2—Co1—O444.2 (3)
C16—C17—C18—C191.9 (7)C11—N2—Co1—O4140.9 (3)
C15—C14—C19—O8178.8 (4)C7—N2—Co1—O3139.7 (3)
C13—C14—C19—O82.0 (7)C11—N2—Co1—O335.1 (3)
C15—C14—C19—C182.9 (6)C7—N2—Co1—O1129.9 (3)
C13—C14—C19—C18176.4 (4)C11—N2—Co1—O155.2 (3)
C17—C18—C19—O8178.9 (5)C7—N2—Co1—O249.8 (3)
C17—C18—C19—C142.7 (7)C11—N2—Co1—O2125.0 (3)
O5—C20—C21—C223.1 (6)C5—N1—Co1—O439.2 (3)
O4—C20—C21—C22174.7 (4)C1—N1—Co1—O4142.3 (3)
O5—C20—C21—C26177.9 (4)C5—N1—Co1—O3144.7 (3)
O4—C20—C21—C264.3 (5)C1—N1—Co1—O333.7 (3)
C26—C21—C22—C230.5 (7)C5—N1—Co1—O1124.9 (3)
C20—C21—C22—C23178.5 (4)C1—N1—Co1—O156.7 (3)
C21—C22—C23—C241.2 (8)C5—N1—Co1—O254.7 (3)
C22—C23—C24—C251.4 (8)C1—N1—Co1—O2123.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O9i0.862.112.955 (4)167
N4—H4A···O10ii0.862.092.916 (5)162
N4—H4B···O6iii0.862.483.210 (6)144
O6—H6···O40.821.802.521 (4)146
O8—H8A···O70.821.832.553 (5)147
O1—H1A···O5iv0.83 (5)1.86 (5)2.684 (4)172 (5)
O1—H1B···O10iv0.81 (4)2.11 (4)2.810 (4)145 (5)
O2—H2A···O70.83 (2)1.88 (2)2.677 (5)158 (5)
O2—H2B···O9v0.82 (4)2.23 (4)2.906 (4)140 (5)
C18—H18···O5vi0.932.413.311 (6)165
C3—H3···Cg1vii0.932.683.520 (4)151
C9—H9···Cg2iii0.932.823.614 (4)144
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z1; (iii) x, y, z1; (iv) x+1, y, z; (v) x1, y, z; (vi) x, y1/2, z; (vii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C7H5O3)2(C6H6N2O)2(H2O)2]
Mr613.44
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)7.0484 (4), 19.4249 (7), 10.3331 (5)
β (°) 109.774 (4)
V3)1331.33 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.48 × 0.39 × 0.36
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.549, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
9880, 5360, 4725
Rint0.061
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 1.05
No. of reflections5360
No. of parameters383
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.67
Absolute structureFlack (1983), with how many Friedel pairs?
Absolute structure parameter0.012 (16)

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
N1—Co12.157 (3)O2—Co12.121 (3)
N2—Co12.147 (3)O3—Co12.079 (3)
O1—Co12.112 (3)O4—Co12.076 (3)
C13—O3—Co1130.1 (3)O1—Co1—O2174.40 (12)
C20—O4—Co1134.1 (3)N2—Co1—N1178.26 (12)
O4—Co1—O3174.58 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O9i0.862.112.955 (4)166.7
N4—H4A···O10ii0.862.092.916 (5)161.6
N4—H4B···O6iii0.862.483.210 (6)143.7
O6—H6···O40.821.802.521 (4)145.8
O8—H8A···O70.821.832.553 (5)146.5
O1—H1A···O5iv0.83 (5)1.86 (5)2.684 (4)172 (5)
O1—H1B···O10iv0.81 (4)2.11 (4)2.810 (4)145 (5)
O2—H2A···O70.834 (19)1.88 (2)2.677 (5)158 (5)
O2—H2B···O9v0.82 (4)2.23 (4)2.906 (4)140 (5)
C18—H18···O5vi0.932.413.311 (6)164.5
C3—H3···Cg1vii0.932.683.520 (4)151
C9—H9···Cg2iii0.932.823.614 (4)144
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z1; (iii) x, y, z1; (iv) x+1, y, z; (v) x1, y, z; (vi) x, y1/2, z; (vii) x, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds