Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of 2-[(2,3-dimethyl­phen­yl)carbamo­yl]benzene­sulfonamide, 2-[(3,4-dimethyl­phen­yl)carbamo­yl]benzene­sulfon­amide and 2-[(2,6-dimethyl­phen­yl)carbamo­yl]benzene­sulfon­amide, all C15H16N2O3S, are stabilized by extensive intra- and inter­molecular hydrogen bonds. In all three structures, the sulfonamide and carbamoyl groups are involved in hydrogen bonding. In the 2,3-dimethyl and 2,6-dimethyl derivatives, dimeric units and chains of mol­ecules are formed parallel to the c axis. In the 3,4-dimethyl derivative, the hydrogen bonding creates tetra­meric units, resulting in macrocyclic R44(22) rings that form sheets in the ab plane. The three analogues are closely related to the fenamate class of nonsteroidal anti-inflammatory drugs.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108016314/hj3076sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108016314/hj3076Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108016314/hj3076IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108016314/hj3076IIIsup4.hkl
Contains datablock III

CCDC references: 697575; 697576; 697577

Comment top

Saccharin derivatives have always been of interest because of their diverse applications (Marta et al., 2003; Culf et al., 1997). Their open-ring benzene sulfonamide derivatives have shown cyclooxygenase-2 (COX-2) inhibitory action and act as analgesic and anti-inflammatory agents (Eatedal et al., 2002). Various biologically important saccharin skeletons and their N-alkyl derivatives have been efficiently prepared (Xu et al., 2006) by chromium oxide-catalyzed oxidation of N-alkyl(o-methyl)arenesulfonamides in acetonitrile as well as by the already developed methodology utilizing irradiation from tungsten and mercury lamps (Masashi et al., 1999) for a similar type of conversion. In continuation of our research on benzene-1,2-benzothiazine-1,1-dioxide and saccharin derivatives (Siddiqui, Ahmad, Khan & Siddiqui, 2007; Siddiqui, Ahmad, Khan et al., 2008; Siddiqui, Ahmad, Siddiqui et al., 2007; Siddiqui, Ahmad, Tariq et al., 2008), we now report the syntheses and crystal structures of the title compounds, o-[(X-dimethylphenyl)carbamoyl]benzene sulfonamide [X = 2,3- for (I), 3,4- for (II) and 2,6- for (III)]. The three dimethylphenyl-substituted analogues are closely related to the fenamate class of non-steroidal anti-inflammatory drugs (NSAIDs) and are expected to exhibit very potent biological activities since sulfonamide and carbamoyl functions exist in the same nucleus simultaneously.

The molecular structure of (I) is presented in Fig. 1. The mean planes of the phenyl rings, C1–C6 and C8–C13, are inclined at 8.19 (8)° with respect to one another, while the carbamoyl group, O3/N2/C7, is inclined at 55.43 (13) and 48.73 (13)°, respectively, to these phenyl rings. Atoms S1 and C7 lie 0.062 (3) and 0.066 (4) Å from the mean plane of the C1–C6 phenyl ring, on opposite sides, indicating a significant strain on this portion of the molecule. The structure contains two distinct patterns of hydrogen bonds, involving intermolecular N—H···O interactions (Fig. 2). The sulfonamide groups are hydrogen bonded via atoms N1 and O1, forming dimers about inversion centers at (0, 1/2, 0) and (0, 0, 1/2) along the b and c axes. The eight-membered rings thus formed may be described in graph-set notation as R22(8) (Bernstein et al., 1994). The carbamoyl groups are also involved in hydrogen bonds, involving atoms O3 and N2, resulting in chains of molecules running parallel to the c axis and affording stability to the structure. In addition, there is a rather weak nonclassical intermolecular hydrogen bond (C4—H4···O1iii; details of the hydrogen-bonding geometry are provided in Table 1). The structure is further stabilized by three additional intramolecular interactions, N1—H1N···O3, C2—H2···O1 and C14—H14D···N2, resulting in seven-, five- and five-membered rings, representing S(7), S(5) and S(5) motifs, respectively (Bernstein et al., 1994).

The molecular structure of (II) is presented in Fig. 3. The mean planes of the phenyl rings, C1–C6 and C8–C13, are inclined at 40.55 (8)° with respect to one another, while the carbamoyl group, O1/N2/C7, is inclined at 59.30 (13) and 26.05 (18)°, respectively, to these phenyl rings. A comparison of mean-plane angles shows that the conformations of (I) and (II) are significantly different from one another. Molecules of (II) related by translation symmetry along the a and b axes form a cluster of four molecules via N1—H1N···O1i and N2—H3N···O3ii hydrogen bonds (details of the hydogen-bonding geometry are provided in Table 2), resulting in a macrocyclic ring (Fig. 4) that may be described in graph-set notation as R44(22) (Bernstein et al., 1994). These hydrogen bonds result in the formation of sheets that are extended in the ab plane. The structure is further stabilized by three additional intramolecular interactions, N1—H2N···O3, C13—H13···O3 and C2—H2···O1, resulting in seven-, six- and five-membered rings, representing S(7), S(6) and S(5) motifs, respectively (Bernstein et al., 1994) (Fig. 3 and Table 2).

The asymmtric unit of (III) is composed of two independent molecules (hereafter called A and B) depicted in Figs. 5 and 6, respectively. In molecule A, the mean planes of the phenyl rings, C1a–C6a and C8a–C13a, are inclined at 6.53 (9)° with respect to each other, while the carbamoyl group, O3a/N2a/C7a, is inclined at 60.34 (16) and 57.20 (17)°, respectively, to these phenyl rings. The corresponding mean-planes angles in molecule B are 3.11 (10), 61.17 (16) and 59.10 (17)°, respectively. The conformations of both molecules of (III) are more closely related to the conformation of (I). The sulfonamide groups of the two molecules in (III) are hydrogen bonded to form dimeric units; the eight-membered rings thus formed represent R22(8) motifs (Bernstein et al., 1994). The carbamoyl groups of molecules A and B are hydrogen bonded to form chains of molecules running parallel to the a axis (Fig. 7). The two molecules contain an identical pair of intramolecular interactions, N1a/b—H···O3a/b and C2a/b—H2a/b···O1a/b, resulting in seven- and five-membered rings, representing S(7) and S(5) motifs, respectively (Bernstein et al., 1994). However, the intramolecular interactions involving hydrogen bonding to atom C15 show markedly different patterns in the two molecules; in molecule A, atom C15 is bonded to O3a, while in molecule B, it is bonded to N2b, resulting in S(7) and S(5) motifs, respectively.

The molecular dimensions in all the structures are in agreement with the corresponding dimensions reported for similar structures (Clark et al., 2003; Vyas et al., 2003; Singh et al., 2004; Bocelli et al., 1995; Sutton & Cody, 1989; Furuya et al., 1989; Siddiqui, Ahmad, Khan et al., 2008; and/or??? Siddiqui, Ahmad, Tariq et al., 2008), with S=O, S—N, S—C, N2—C7, N2—C8 and C=O distances lying in very close ranges of 1.430 (2)–1.438 (2), 1.598 (3)–1.614 (3), 1.773 (3)–1.781 (3), 1.331 (4)–1.338 (4), 1.429 (4)–1.440 (4) and 1.236 (3)–1.241 (3) Å, respectively. The bond angle C—N—C at N2 in (II) at 128.1 (3)° is significantly larger than the corresponding angles in (I), (IIIA) and (IIIB). The remaining angles lie within narrow ranges in all the three structures.

In all molecules, the conformation about the S—N bond is in agreement with the conformation of a handful of structures containing an o-C-substituted benzenesulfonamide fragment [Cambridge Structural Database (CSD), Version 5.29; Allen, 2002]. The N1 atoms in all these structures are tetrahedral, the sum of angles being in the range 334–340°. The H atoms bonded to atom N1, and atoms O1 and O2 bonded to S1, are staggered, as observed in chlorophenyl analogues of the title compounds (Siddiqui, Ahmad, Khan et al., 2008) and the compound with CSD refcode COYVER (Foresti et al., 1985). Several structures have been reported wherein the H and O atoms of the sulfonamide unit are eclipsed, e.g. CSD refcodes ENIROI (Vyas et al., 2003), GUFQED01 (Clark et al., 2003 or2005????) and ZZZULS01 (Tremayne et al., 2002). Fundamental work on the three-dimensional orientation of sulfonamides has been reported by several groups of investigators (e.g. Bordner et al., 1984, 1989; Beddoes et al., 1986; Street et al., 1987; Luger et al., 1996; Helliwell et al., 1997; Bhatt et al., 2005).

Related literature top

For related literature, see: Allen (2002); Bernstein et al. (1994); Bocelli et al. (1995); Clark et al. (2003); Culf et al. (1997); Eatedal et al. (2002); Furuya et al. (1989); Marta et al. (2003); Masashi et al. (1999); Siddiqui et al. (2007a, 2007b, 2008a, 2008b); Singh et al. (2004); Sutton & Cody (1989); Vyas et al. (2003); Xu et al. (2006).

Experimental top

Suspensions of saccharin (1.0 g, 5.46 mmol) and dimethylaniline (5 ml in the case of 2,3- and 2,6-dimethylaniline, and 0.5 g in the case of 3,4-dimethylaniline) in xylene (25 ml) were stirred at room temperature for 1.5 h and then heated at 373 K for 2–7 h. The reaction mixtures were subsequently cooled to room temperature, filtered and dried to obtain colorless solid products. The products were crystallized from MeOH:CH3CN (1:3) solutions by slow evaporation at 313 K.

For (I): m.p. 463–465 K. IR (neat, νmax, cm-1): NH2 3415, 3325, CO 1650, SO2 1343, 1150; 1H NMR (300 MHz, methanol-d4): δ 2.30 (s, 3H, CH3), 2.35 (s, 3H, CH3), 7.12–7.34 (m, 3H, C6H3), 7.63–8.10 (m, 4H, C6H4); 13C NMR: δ 169.7, 142.2, 138.8, 137.3, 135.4, 134.3, 132.2, 131.7, 130.5, 129.5, 124.2, 120.5, 21.4, 20.8. LRMS (ES+): m/z: 304.09 [M+] (39.7%).

For (II): m.p. 443–444 K. IR (neat, νmax, cm-1): NH2 3425, 3365, CO 1705, SO2 1354, 1167; 1H NMR (300 MHz, methanol-d4): δ 2.30 (s, 3H, CH3), 2.35 (s, 3H, CH3), 7.12–7.32 (m, 2H, C6H3), 7.53–7.70 (m, 4H, C6H4), 8. 20 (m, 1H, C6H3); 13C NMR: δ 171.8, 144.2, 140.9, 139.2, 137.4, 136.3, 134.2, 133.7, 132.5, 131.6, 126.3, 122.5, 23.5, 22.9. LRMS (ES+): m/z: 304.09 [M+] (25.1%).

For (III): m.p. 496–497 K. IR (neat, νmax, cm-1): NH2 3423, 3345, CO 1715, SO2 1345, 1150; 1H NMR (300 MHz, methanol-d4): δ 2.30 (s, 3H, CH3), 2.42 (s, 3H, CH3), 7.26–7.52 (m, 3H, C6H3), 7.68–8.10 (m, 4H, C6H4); 13C NMR: δ 168.7, 141.2, 139.7, 139.2, 137.4, 136.3, 134.2, 133.7, 132.5, 130.4, 125.3, 121.1, 22.3, 21.1. LRMS (ES+): m/z: 304.09 [M+] (21.9%).

Refinement top

For the three structures, H atoms bonded to C atoms were included in the refinements at geometrically idealized positions with aromatic and methyl-type H atoms at C—H distances of 0.95 and 0.98 Å, respectively, and Uiso(H) values of 1.2 times Ueq of the atoms to which they were bonded; the H atoms bonded to atom C14 in (I) were equally disordered over six sites. H atoms bonded to N atoms were allowed to refine with Uiso(H) values of 1.2 times Ueq of the N atoms. The final difference maps were free of chemically significant features.

Computing details top

For all compounds, data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) drawing of (I), with displacement ellipsoids plotted at the 50% probability level. Intramolecular interactions are shown as dashed lines.
[Figure 2] Fig. 2. Intermolecular interactions (dashed lines) in the unit cell of (I), showing eight-membered rings formed by sulfonamide groups and chains formed by carbamoyl groups running parallel to the c axis.
[Figure 3] Fig. 3. An ORTEP-3 (Farrugia, 1997) drawing of (II), with displacement ellipsoids plotted at the 50% probability level. Intramolecular interactions are shown as dashed lines. [Please provide]
[Figure 4] Fig. 4. Intermolecular interactions (dashed lines) in the unit cell of (II), showing macrocyclic rings formed by clusters of four molecules; these clusters are further extended into sheets in the ab plane.
[Figure 5] Fig. 5. An ORTEP-3 (Farrugia, 1997) drawing of molecule A of (III), with displacement ellipsoids plotted at the 50% probability level. Intramolecular interactions are shown as dashed lines.
[Figure 6] Fig. 6. An ORTEP-3 (Farrugia, 1997) drawing of molecule B of (III), with displacement ellipsoids plotted at the 50% probability level. Intramolecular interactions are shown as dashed lines.
[Figure 7] Fig. 7. Intermolecular interactions (dashed lines) in the unit cell of (III), showing eight-membered rings formed by sulfonamide groups and chains formed by carbamoyl groups running parallel to the a axis.
(I) 2-[(2,3-dimethylphenyl)carbamoyl]benzenesulfonamide top
Crystal data top
C15H16N2O3SF(000) = 640
Mr = 304.36Dx = 1.372 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9490 reflections
a = 12.842 (7) Åθ = 3.0–25.1°
b = 15.153 (9) ŵ = 0.23 mm1
c = 7.572 (4) ÅT = 173 K
β = 91.16 (4)°Needle, colorless
V = 1473.2 (14) Å30.40 × 0.04 × 0.02 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2583 independent reflections
Radiation source: fine-focus sealed tube1926 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω and ϕ scansθmax = 25.1°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1515
Tmin = 0.913, Tmax = 0.995k = 1718
9490 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.4285P]
where P = (Fo2 + 2Fc2)/3
2583 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C15H16N2O3SV = 1473.2 (14) Å3
Mr = 304.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.842 (7) ŵ = 0.23 mm1
b = 15.153 (9) ÅT = 173 K
c = 7.572 (4) Å0.40 × 0.04 × 0.02 mm
β = 91.16 (4)°
Data collection top
Nonius KappaCCD
diffractometer
2583 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
1926 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.995Rint = 0.059
9490 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.26 e Å3
2583 reflectionsΔρmin = 0.52 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.85704 (4)0.44450 (4)0.13149 (8)0.0377 (2)
O10.94617 (13)0.48648 (12)0.2130 (2)0.0482 (5)
O20.75841 (12)0.45083 (10)0.2153 (2)0.0413 (4)
O30.69083 (11)0.35295 (10)0.1244 (2)0.0368 (4)
N10.84482 (18)0.48563 (14)0.0640 (3)0.0414 (5)
H1N0.795 (2)0.4542 (17)0.127 (3)0.050*
H2N0.903 (2)0.4880 (18)0.113 (3)0.050*
N20.62325 (14)0.25833 (13)0.0763 (3)0.0347 (5)
H3N0.6390 (19)0.2205 (17)0.159 (3)0.042*
C10.88627 (17)0.33062 (15)0.1115 (3)0.0337 (5)
C20.98520 (18)0.30161 (18)0.1590 (3)0.0421 (6)
H21.03690.34280.19630.050*
C31.00853 (19)0.21287 (18)0.1518 (3)0.0455 (6)
H31.07630.19310.18550.055*
C40.9346 (2)0.15268 (17)0.0963 (3)0.0436 (6)
H40.95170.09180.08970.052*
C50.83481 (18)0.18134 (16)0.0500 (3)0.0383 (6)
H50.78370.13960.01280.046*
C60.80915 (17)0.27031 (15)0.0575 (3)0.0330 (5)
C70.70203 (17)0.29875 (15)0.0036 (3)0.0326 (5)
C80.51544 (17)0.27497 (15)0.0345 (3)0.0352 (5)
C90.44880 (18)0.20341 (16)0.0089 (3)0.0384 (6)
C100.34323 (18)0.22123 (19)0.0272 (3)0.0470 (7)
C110.3098 (2)0.3077 (2)0.0389 (4)0.0551 (7)
H110.23840.31930.06510.066*
C120.3772 (2)0.3773 (2)0.0138 (4)0.0559 (7)
H120.35240.43630.02290.067*
C130.48080 (19)0.36115 (17)0.0246 (3)0.0454 (6)
H130.52780.40870.04410.054*
C140.4895 (2)0.11052 (18)0.0191 (4)0.0534 (7)
H14A0.43200.06900.00210.080*0.50
H14B0.52040.10000.13660.080*0.50
H14C0.54250.10200.07060.080*0.50
H14D0.56460.11170.04470.080*0.50
H14E0.47630.08070.09400.080*0.50
H14F0.45410.07860.11320.080*0.50
C150.2666 (2)0.1463 (2)0.0543 (4)0.0646 (8)
H15A0.19730.17050.08190.078*
H15B0.26370.11080.05370.078*
H15C0.28910.10910.15240.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0373 (3)0.0341 (3)0.0416 (4)0.0017 (3)0.0021 (2)0.0028 (2)
O10.0467 (10)0.0465 (11)0.0511 (11)0.0130 (8)0.0064 (8)0.0057 (8)
O20.0411 (9)0.0363 (10)0.0468 (10)0.0048 (7)0.0053 (7)0.0020 (7)
O30.0366 (9)0.0364 (9)0.0372 (9)0.0001 (7)0.0042 (7)0.0038 (7)
N10.0416 (12)0.0373 (12)0.0453 (13)0.0044 (10)0.0001 (9)0.0044 (9)
N20.0329 (11)0.0325 (11)0.0386 (11)0.0001 (8)0.0045 (8)0.0037 (8)
C10.0334 (12)0.0367 (13)0.0310 (12)0.0018 (10)0.0003 (9)0.0009 (9)
C20.0342 (13)0.0528 (16)0.0391 (14)0.0040 (12)0.0021 (10)0.0004 (11)
C30.0389 (14)0.0565 (17)0.0411 (14)0.0151 (12)0.0014 (10)0.0044 (12)
C40.0528 (16)0.0393 (14)0.0387 (14)0.0181 (13)0.0043 (11)0.0039 (11)
C50.0427 (14)0.0356 (13)0.0365 (13)0.0037 (11)0.0011 (10)0.0012 (10)
C60.0349 (12)0.0331 (13)0.0310 (12)0.0047 (10)0.0004 (9)0.0009 (9)
C70.0366 (13)0.0281 (12)0.0330 (12)0.0005 (10)0.0038 (9)0.0057 (10)
C80.0308 (12)0.0376 (14)0.0373 (13)0.0036 (10)0.0014 (9)0.0026 (10)
C90.0366 (13)0.0417 (14)0.0368 (13)0.0011 (11)0.0017 (10)0.0001 (10)
C100.0349 (14)0.0681 (19)0.0379 (14)0.0043 (12)0.0001 (10)0.0001 (12)
C110.0333 (14)0.077 (2)0.0549 (17)0.0126 (14)0.0013 (11)0.0120 (14)
C120.0451 (16)0.0551 (18)0.0676 (19)0.0159 (14)0.0072 (13)0.0168 (14)
C130.0432 (15)0.0373 (15)0.0557 (16)0.0057 (11)0.0034 (12)0.0066 (11)
C140.0512 (16)0.0415 (16)0.0674 (18)0.0076 (12)0.0033 (13)0.0049 (13)
C150.0440 (16)0.092 (2)0.0576 (18)0.0177 (16)0.0011 (13)0.0073 (16)
Geometric parameters (Å, º) top
S1—O21.431 (2)C8—C131.381 (3)
S1—O11.438 (2)C8—C91.393 (3)
S1—N11.611 (2)C9—C101.404 (3)
S1—C11.773 (3)C9—C141.503 (4)
O3—C71.236 (3)C10—C111.381 (4)
N1—H1N0.92 (3)C10—C151.514 (4)
N1—H2N0.84 (3)C11—C121.376 (4)
N2—C71.338 (3)C11—H110.9500
N2—C81.436 (3)C12—C131.378 (4)
N2—H3N0.87 (3)C12—H120.9500
C1—C21.385 (3)C13—H130.9500
C1—C61.403 (3)C14—H14A0.9800
C2—C31.379 (4)C14—H14B0.9800
C2—H20.9500C14—H14C0.9800
C3—C41.376 (4)C14—H14D0.9800
C3—H30.9500C14—H14E0.9800
C4—C51.392 (3)C14—H14F0.9800
C4—H40.9500C15—H15A0.9800
C5—C61.389 (3)C15—H15B0.9800
C5—H50.9500C15—H15C0.9800
C6—C71.505 (3)
O2—S1—O1118.95 (11)C11—C10—C9119.5 (2)
O2—S1—N1108.12 (12)C11—C10—C15120.1 (2)
O1—S1—N1106.57 (12)C9—C10—C15120.3 (3)
O2—S1—C1107.08 (10)C12—C11—C10121.7 (2)
O1—S1—C1107.41 (11)C12—C11—H11119.2
N1—S1—C1108.36 (11)C10—C11—H11119.2
S1—N1—H1N109 (2)C11—C12—C13119.7 (3)
S1—N1—H2N111 (2)C11—C12—H12120.2
H1N—N1—H2N114 (3)C13—C12—H12120.2
C7—N2—C8123.7 (2)C12—C13—C8119.2 (2)
C7—N2—H3N117 (2)C12—C13—H13120.4
C8—N2—H3N119 (2)C8—C13—H13120.4
C2—C1—C6120.5 (2)C9—C14—H14A109.5
C2—C1—S1118.79 (18)C9—C14—H14B109.5
C6—C1—S1120.64 (17)H14A—C14—H14B109.5
C3—C2—C1119.9 (2)C9—C14—H14C109.5
C3—C2—H2120.1H14A—C14—H14C109.5
C1—C2—H2120.1H14B—C14—H14C109.5
C4—C3—C2120.6 (2)C9—C14—H14D109.5
C4—C3—H3119.7H14A—C14—H14D141.1
C2—C3—H3119.7H14B—C14—H14D56.3
C3—C4—C5119.8 (2)H14C—C14—H14D56.3
C3—C4—H4120.1C9—C14—H14E109.5
C5—C4—H4120.1H14A—C14—H14E56.3
C6—C5—C4120.7 (2)H14B—C14—H14E141.1
C6—C5—H5119.7H14C—C14—H14E56.3
C4—C5—H5119.7H14D—C14—H14E109.5
C5—C6—C1118.5 (2)C9—C14—H14F109.5
C5—C6—C7118.8 (2)H14A—C14—H14F56.3
C1—C6—C7122.6 (2)H14B—C14—H14F56.3
O3—C7—N2124.2 (2)H14C—C14—H14F141.1
O3—C7—C6120.6 (2)H14D—C14—H14F109.5
N2—C7—C6115.1 (2)H14E—C14—H14F109.5
C13—C8—C9122.2 (2)C10—C15—H15A109.5
C13—C8—N2119.1 (2)C10—C15—H15B109.5
C9—C8—N2118.7 (2)H15A—C15—H15B109.5
C8—C9—C10117.7 (2)C10—C15—H15C109.5
C8—C9—C14120.7 (2)H15A—C15—H15C109.5
C10—C9—C14121.6 (2)H15B—C15—H15C109.5
O2—S1—C1—C2133.84 (18)C1—C6—C7—O354.5 (3)
O1—S1—C1—C25.0 (2)C5—C6—C7—N255.6 (3)
N1—S1—C1—C2109.7 (2)C1—C6—C7—N2128.4 (2)
O2—S1—C1—C642.9 (2)C7—N2—C8—C1348.6 (3)
O1—S1—C1—C6171.7 (2)C7—N2—C8—C9132.8 (2)
N1—S1—C1—C673.5 (2)C13—C8—C9—C100.2 (3)
C6—C1—C2—C30.5 (3)N2—C8—C9—C10178.3 (2)
S1—C1—C2—C3177.2 (2)C13—C8—C9—C14179.5 (2)
C1—C2—C3—C40.6 (4)N2—C8—C9—C142.0 (3)
C2—C3—C4—C51.2 (4)C8—C9—C10—C111.1 (3)
C3—C4—C5—C60.6 (3)C14—C9—C10—C11178.6 (2)
C4—C5—C6—C10.5 (3)C8—C9—C10—C15179.4 (2)
C4—C5—C6—C7176.6 (2)C14—C9—C10—C150.9 (4)
C2—C1—C6—C51.0 (3)C9—C10—C11—C120.9 (4)
S1—C1—C6—C5177.7 (2)C15—C10—C11—C12179.6 (3)
C2—C1—C6—C7177.0 (2)C10—C11—C12—C130.2 (4)
S1—C1—C6—C76.3 (3)C11—C12—C13—C81.0 (4)
C8—N2—C7—O31.8 (3)C9—C8—C13—C120.8 (4)
C8—N2—C7—C6178.8 (2)N2—C8—C13—C12179.4 (2)
C5—C6—C7—O3121.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H3N···O3i0.87 (3)2.08 (3)2.941 (3)170 (2)
N1—H2N···O1ii0.84 (3)2.13 (3)2.963 (3)171 (3)
N1—H1N···O30.92 (3)2.04 (3)2.850 (3)146 (2)
C2—H2···O10.952.472.877 (4)105
C4—H4···O1iii0.952.533.268 (3)134
C14—H14D···N20.982.362.851 (3)110
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y+1, z; (iii) x+2, y1/2, z+1/2.
(II) 2-[(3,4-dimethylphenyl)carbamoyl]benzenesulfonamide top
Crystal data top
C15H16N2O3SF(000) = 640
Mr = 304.36Dx = 1.445 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4440 reflections
a = 11.597 (9) Åθ = 4.0–25.0°
b = 7.450 (3) ŵ = 0.24 mm1
c = 16.324 (13) ÅT = 173 K
β = 97.29 (3)°Prism, colorless
V = 1399.0 (17) Å30.20 × 0.10 × 0.06 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2423 independent reflections
Radiation source: fine-focus sealed tube1767 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω and ϕ scansθmax = 25.0°, θmin = 4.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1313
Tmin = 0.953, Tmax = 0.986k = 88
4440 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.096P)2 + 0.014P]
where P = (Fo2 + 2Fc2)/3
2423 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C15H16N2O3SV = 1399.0 (17) Å3
Mr = 304.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.597 (9) ŵ = 0.24 mm1
b = 7.450 (3) ÅT = 173 K
c = 16.324 (13) Å0.20 × 0.10 × 0.06 mm
β = 97.29 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2423 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
1767 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.986Rint = 0.048
4440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.31 e Å3
2423 reflectionsΔρmin = 0.41 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31267 (6)0.32180 (9)0.24525 (4)0.0291 (3)
O30.11651 (17)0.0226 (2)0.19202 (12)0.0307 (5)
O10.41605 (18)0.4207 (3)0.27427 (12)0.0377 (6)
O20.22327 (18)0.4043 (3)0.18927 (12)0.0347 (5)
N10.3540 (3)0.1450 (4)0.19979 (17)0.0337 (6)
H1N0.419 (3)0.105 (4)0.222 (2)0.040*
H2N0.299 (3)0.069 (4)0.193 (2)0.040*
N20.0340 (2)0.1951 (3)0.22300 (15)0.0278 (6)
H3N0.058 (3)0.254 (4)0.255 (2)0.033*
C10.2466 (2)0.2507 (4)0.33248 (17)0.0265 (7)
C20.3061 (3)0.2794 (4)0.41077 (18)0.0313 (7)
H20.38030.33520.41700.038*
C30.2564 (3)0.2261 (4)0.47966 (19)0.0345 (8)
H30.29760.24320.53320.041*
C40.1479 (3)0.1486 (4)0.47110 (19)0.0330 (7)
H40.11460.11200.51870.040*
C50.0867 (3)0.1237 (4)0.39282 (18)0.0287 (7)
H50.01100.07290.38730.034*
C60.1357 (2)0.1726 (3)0.32303 (18)0.0252 (7)
C70.0722 (2)0.1253 (4)0.23908 (17)0.0263 (7)
C80.1107 (2)0.1888 (3)0.14731 (18)0.0263 (7)
C90.2264 (3)0.2350 (3)0.15047 (19)0.0299 (7)
H90.25240.25570.20260.036*
C100.3048 (3)0.2516 (4)0.07911 (19)0.0296 (7)
C110.2658 (3)0.2219 (4)0.00208 (18)0.0308 (7)
C120.1515 (3)0.1708 (3)0.00051 (19)0.0314 (7)
H120.12560.14720.05140.038*
C130.0727 (3)0.1524 (4)0.07207 (18)0.0303 (7)
H130.00520.11570.06920.036*
C140.4282 (3)0.3019 (4)0.0860 (2)0.0416 (8)
H14A0.44740.41360.05560.050*
H14B0.43780.31900.14430.050*
H14C0.48000.20590.06260.050*
C150.3466 (3)0.2435 (5)0.0776 (2)0.0418 (8)
H15A0.30130.24060.12440.050*
H15B0.38750.35850.07710.050*
H15C0.40330.14530.08300.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0291 (5)0.0346 (4)0.0236 (4)0.0028 (3)0.0031 (3)0.0020 (3)
O30.0306 (12)0.0341 (10)0.0267 (11)0.0027 (9)0.0010 (9)0.0028 (9)
O10.0335 (13)0.0463 (12)0.0336 (13)0.0154 (10)0.0049 (10)0.0027 (9)
O20.0389 (13)0.0400 (11)0.0235 (11)0.0027 (9)0.0020 (10)0.0068 (9)
N10.0267 (15)0.0446 (15)0.0304 (15)0.0005 (12)0.0060 (12)0.0012 (12)
N20.0260 (15)0.0316 (13)0.0252 (14)0.0011 (10)0.0015 (11)0.0033 (10)
C10.0290 (17)0.0259 (14)0.0246 (17)0.0040 (12)0.0038 (13)0.0030 (12)
C20.0297 (17)0.0357 (16)0.0274 (17)0.0007 (13)0.0005 (13)0.0005 (13)
C30.040 (2)0.0395 (17)0.0230 (16)0.0072 (14)0.0001 (14)0.0034 (13)
C40.042 (2)0.0331 (15)0.0250 (17)0.0063 (13)0.0087 (15)0.0026 (12)
C50.0260 (16)0.0290 (14)0.0321 (18)0.0030 (12)0.0071 (13)0.0013 (12)
C60.0253 (16)0.0246 (14)0.0252 (16)0.0027 (11)0.0010 (13)0.0006 (11)
C70.0246 (16)0.0244 (13)0.0300 (17)0.0017 (12)0.0043 (13)0.0022 (12)
C80.0254 (16)0.0228 (13)0.0299 (17)0.0024 (11)0.0006 (13)0.0007 (11)
C90.0329 (18)0.0279 (14)0.0294 (17)0.0004 (12)0.0065 (14)0.0008 (13)
C100.0250 (17)0.0284 (14)0.0344 (18)0.0020 (12)0.0001 (14)0.0028 (13)
C110.0355 (19)0.0283 (15)0.0276 (17)0.0027 (12)0.0000 (14)0.0008 (12)
C120.0345 (18)0.0310 (15)0.0284 (17)0.0030 (13)0.0028 (14)0.0023 (12)
C130.0263 (17)0.0323 (15)0.0308 (17)0.0028 (12)0.0017 (14)0.0016 (12)
C140.0294 (19)0.0528 (19)0.042 (2)0.0042 (14)0.0006 (15)0.0030 (15)
C150.042 (2)0.0452 (18)0.0366 (19)0.0036 (15)0.0029 (15)0.0010 (15)
Geometric parameters (Å, º) top
S1—O21.431 (2)C5—H50.9500
S1—O11.435 (2)C6—C71.513 (4)
S1—N11.614 (3)C8—C131.384 (4)
S1—C11.781 (3)C8—C91.393 (4)
O3—C71.241 (3)C9—C101.389 (4)
N1—H1N0.85 (4)C9—H90.9500
N1—H2N0.85 (4)C10—C111.407 (4)
N2—C71.331 (4)C10—C141.497 (4)
N2—C81.429 (4)C11—C121.382 (4)
N2—H3N0.76 (3)C11—C151.512 (5)
C1—C21.389 (4)C12—C131.396 (4)
C1—C61.403 (4)C12—H120.9500
C2—C31.385 (4)C13—H130.9500
C2—H20.9500C14—H14A0.9800
C3—C41.376 (4)C14—H14B0.9800
C3—H30.9500C14—H14C0.9800
C4—C51.393 (4)C15—H15A0.9800
C4—H40.9500C15—H15B0.9800
C5—C61.385 (4)C15—H15C0.9800
O2—S1—O1119.84 (13)N2—C7—C6114.8 (2)
O2—S1—N1106.86 (15)C13—C8—C9119.9 (3)
O1—S1—N1106.64 (15)C13—C8—N2122.7 (3)
O2—S1—C1106.74 (14)C9—C8—N2117.2 (3)
O1—S1—C1108.34 (14)C10—C9—C8121.4 (3)
N1—S1—C1107.93 (13)C10—C9—H9119.3
S1—N1—H1N113 (2)C8—C9—H9119.3
S1—N1—H2N110 (2)C9—C10—C11119.0 (3)
H1N—N1—H2N116 (3)C9—C10—C14119.3 (3)
C7—N2—C8128.1 (3)C11—C10—C14121.7 (3)
C7—N2—H3N120 (3)C12—C11—C10118.5 (3)
C8—N2—H3N112 (3)C12—C11—C15120.3 (3)
C2—C1—C6120.4 (3)C10—C11—C15121.2 (3)
C2—C1—S1118.4 (2)C11—C12—C13122.6 (3)
C6—C1—S1121.1 (2)C11—C12—H12118.7
C3—C2—C1119.6 (3)C13—C12—H12118.7
C3—C2—H2120.2C8—C13—C12118.4 (3)
C1—C2—H2120.2C8—C13—H13120.8
C4—C3—C2120.5 (3)C12—C13—H13120.8
C4—C3—H3119.8C10—C14—H14A109.5
C2—C3—H3119.8C10—C14—H14B109.5
C3—C4—C5120.1 (3)H14A—C14—H14B109.5
C3—C4—H4119.9C10—C14—H14C109.5
C5—C4—H4119.9H14A—C14—H14C109.5
C6—C5—C4120.4 (3)H14B—C14—H14C109.5
C6—C5—H5119.8C11—C15—H15A109.5
C4—C5—H5119.8C11—C15—H15B109.5
C5—C6—C1119.0 (3)H15A—C15—H15B109.5
C5—C6—C7118.7 (3)C11—C15—H15C109.5
C1—C6—C7122.0 (2)H15A—C15—H15C109.5
O3—C7—N2124.3 (3)H15B—C15—H15C109.5
O3—C7—C6120.8 (2)
O2—S1—C1—C2137.3 (2)C5—C6—C7—O3117.4 (3)
O1—S1—C1—C27.0 (3)C1—C6—C7—O357.2 (4)
N1—S1—C1—C2108.1 (2)C5—C6—C7—N259.6 (3)
O2—S1—C1—C640.7 (3)C1—C6—C7—N2125.7 (3)
O1—S1—C1—C6171.1 (2)C7—N2—C8—C1319.2 (4)
N1—S1—C1—C673.8 (3)C7—N2—C8—C9165.7 (3)
C6—C1—C2—C31.7 (4)C13—C8—C9—C102.2 (4)
S1—C1—C2—C3179.7 (2)N2—C8—C9—C10173.0 (2)
C1—C2—C3—C41.4 (4)C8—C9—C10—C110.4 (4)
C2—C3—C4—C50.3 (4)C8—C9—C10—C14179.9 (3)
C3—C4—C5—C61.6 (4)C9—C10—C11—C122.4 (4)
C4—C5—C6—C11.3 (4)C14—C10—C11—C12178.1 (3)
C4—C5—C6—C7173.5 (2)C9—C10—C11—C15178.2 (3)
C2—C1—C6—C50.3 (4)C14—C10—C11—C151.3 (4)
S1—C1—C6—C5178.4 (2)C10—C11—C12—C131.9 (4)
C2—C1—C6—C7175.0 (2)C15—C11—C12—C13178.7 (3)
S1—C1—C6—C77.0 (4)C9—C8—C13—C122.7 (4)
C8—N2—C7—O39.3 (4)N2—C8—C13—C12172.3 (2)
C8—N2—C7—C6173.8 (2)C11—C12—C13—C80.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (4)2.35 (4)3.131 (4)153 (3)
N2—H3N···O3ii0.76 (3)2.32 (3)3.022 (3)155 (3)
N1—H2N···O30.85 (4)2.14 (4)2.888 (4)146 (3)
C2—H2···O10.952.502.902 (4)106
C13—H13···O30.952.352.914 (4)118
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
(III) 2-[(2,6-dimethylphenyl)carbamoyl]benzenesulfonamide top
Crystal data top
C15H16N2O3SZ = 4
Mr = 304.36F(000) = 640
Triclinic, P1Dx = 1.405 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.968 (3) ÅCell parameters from 9182 reflections
b = 8.509 (5) Åθ = 2.6–25.0°
c = 21.510 (11) ŵ = 0.24 mm1
α = 84.30 (2)°T = 173 K
β = 82.46 (3)°Prism, colorless
γ = 88.66 (3)°0.12 × 0.07 × 0.06 mm
V = 1438.5 (12) Å3
Data collection top
Nonius KappaCCD
diffractometer
5044 independent reflections
Radiation source: fine-focus sealed tube3197 reflections with (I) > 2.0 σ(I)
Graphite monochromatorRint = 0.062
ω and ϕ scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 99
Tmin = 0.972, Tmax = 0.986k = 1010
9182 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.06P)2]
where P = (Fo2 + 2Fc2)/3
5044 reflections(Δ/σ)max = 0.006
401 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C15H16N2O3Sγ = 88.66 (3)°
Mr = 304.36V = 1438.5 (12) Å3
Triclinic, P1Z = 4
a = 7.968 (3) ÅMo Kα radiation
b = 8.509 (5) ŵ = 0.24 mm1
c = 21.510 (11) ÅT = 173 K
α = 84.30 (2)°0.12 × 0.07 × 0.06 mm
β = 82.46 (3)°
Data collection top
Nonius KappaCCD
diffractometer
5044 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
3197 reflections with (I) > 2.0 σ(I)
Tmin = 0.972, Tmax = 0.986Rint = 0.062
9182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.27 e Å3
5044 reflectionsΔρmin = 0.39 e Å3
401 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1a0.84210 (10)0.17712 (10)0.67586 (4)0.0302 (2)
O1a0.8096 (3)0.2756 (3)0.62844 (11)0.0421 (6)
O2a0.7201 (2)0.1656 (3)0.73031 (10)0.0349 (6)
O3a1.0350 (2)0.0410 (3)0.76208 (10)0.0275 (5)
N1a1.0169 (3)0.2381 (3)0.69916 (14)0.0316 (7)
H1Na1.087 (4)0.271 (4)0.6658 (16)0.038*
H2Na1.060 (4)0.164 (4)0.7200 (15)0.038*
N2a0.8060 (3)0.1988 (3)0.78462 (12)0.0238 (6)
H3Na0.728 (4)0.258 (4)0.7660 (14)0.029*
C1a0.8716 (4)0.0189 (4)0.64007 (14)0.0259 (7)
C2a0.8663 (4)0.0484 (4)0.57597 (15)0.0318 (8)
H2a0.85190.03660.55170.038*
C3a0.8819 (4)0.2019 (4)0.54667 (15)0.0336 (8)
H3a0.87910.22120.50260.040*
C4a0.9017 (4)0.3262 (4)0.58194 (15)0.0321 (8)
H4a0.91330.43080.56200.039*
C5a0.9044 (3)0.2977 (4)0.64662 (15)0.0260 (7)
H5a0.91590.38370.67070.031*
C6a0.8905 (3)0.1450 (4)0.67662 (14)0.0226 (7)
C7a0.9141 (4)0.1211 (4)0.74519 (14)0.0234 (7)
C8a0.8284 (4)0.2138 (4)0.84909 (14)0.0250 (7)
C9a0.8431 (4)0.3670 (4)0.86593 (16)0.0337 (8)
C10a0.8700 (4)0.3847 (5)0.92737 (16)0.0406 (9)
H10a0.88250.48750.93970.049*
C11a0.8788 (4)0.2547 (5)0.97083 (17)0.0430 (9)
H11a0.89760.26841.01270.052*
C12a0.8603 (4)0.1059 (4)0.95346 (16)0.0378 (9)
H12a0.86550.01750.98380.045*
C13a0.8340 (4)0.0810 (4)0.89243 (15)0.0305 (8)
C14a0.8327 (5)0.5076 (4)0.81857 (17)0.0470 (10)
H14a0.91750.49660.78190.070*
H14b0.85440.60390.83760.070*
H14c0.71950.51410.80530.070*
C15a0.8117 (4)0.0861 (4)0.87674 (16)0.0386 (9)
H15a0.92260.13220.86300.058*
H15b0.74050.08480.84280.058*
H15c0.75750.14960.91420.058*
S1b0.65579 (9)0.53453 (10)0.40494 (4)0.0262 (2)
O1b0.7086 (3)0.5007 (3)0.46629 (10)0.0330 (6)
O2b0.7605 (3)0.4801 (3)0.35173 (10)0.0311 (5)
O3b0.4598 (2)0.6297 (3)0.28083 (10)0.0285 (5)
N1b0.4736 (3)0.4572 (3)0.40832 (15)0.0309 (7)
H1Nb0.436 (4)0.465 (4)0.3749 (16)0.037*
H2Nb0.396 (4)0.490 (4)0.4424 (16)0.037*
N2b0.6867 (3)0.7542 (3)0.22309 (12)0.0265 (6)
H3Nb0.768 (4)0.826 (4)0.2240 (15)0.032*
C1b0.6366 (3)0.7418 (4)0.39049 (14)0.0230 (7)
C2b0.6516 (4)0.8349 (4)0.43874 (15)0.0289 (8)
H2b0.67320.78720.47880.035*
C3b0.6352 (4)0.9978 (4)0.42859 (16)0.0333 (8)
H3b0.64471.06120.46190.040*
C4b0.6050 (4)1.0683 (4)0.37044 (16)0.0307 (8)
H4b0.59211.17970.36380.037*
C5b0.5937 (4)0.9749 (4)0.32151 (15)0.0281 (8)
H5b0.57461.02360.28130.034*
C6b0.6098 (3)0.8116 (4)0.33064 (14)0.0235 (7)
C7b0.5813 (4)0.7202 (4)0.27624 (14)0.0235 (7)
C8b0.6604 (4)0.7080 (4)0.16261 (15)0.0282 (8)
C9b0.6375 (4)0.8308 (4)0.11589 (15)0.0314 (8)
C10b0.6104 (4)0.7904 (5)0.05707 (16)0.0415 (9)
H10b0.59410.87130.02460.050*
C11b0.6070 (4)0.6339 (5)0.04513 (17)0.0453 (10)
H11b0.58790.60790.00470.054*
C12b0.6310 (4)0.5163 (5)0.09157 (17)0.0429 (10)
H12b0.62850.40930.08270.051*
C13b0.6587 (4)0.5499 (4)0.15112 (16)0.0334 (8)
C14b0.6456 (5)1.0014 (4)0.12832 (17)0.0452 (10)
H14d0.62491.06930.09050.068*
H14e0.75791.02320.13920.068*
H14f0.55921.02260.16340.068*
C15b0.6875 (5)0.4168 (4)0.20061 (17)0.0425 (9)
H15d0.74600.32910.18030.064*
H15e0.57820.38070.22320.064*
H15f0.75690.45430.23040.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1a0.0294 (4)0.0248 (5)0.0377 (5)0.0002 (3)0.0091 (4)0.0036 (4)
O1a0.0502 (15)0.0289 (15)0.0531 (16)0.0027 (11)0.0212 (12)0.0130 (12)
O2a0.0282 (12)0.0325 (15)0.0407 (14)0.0010 (10)0.0015 (10)0.0043 (11)
O3a0.0247 (11)0.0285 (13)0.0299 (13)0.0033 (9)0.0063 (9)0.0029 (10)
N1a0.0280 (15)0.0290 (18)0.0394 (19)0.0072 (12)0.0076 (13)0.0097 (14)
N2a0.0244 (13)0.0234 (16)0.0238 (15)0.0053 (11)0.0052 (11)0.0020 (12)
C1a0.0254 (16)0.028 (2)0.0246 (19)0.0021 (13)0.0046 (13)0.0027 (15)
C2a0.0316 (18)0.035 (2)0.031 (2)0.0031 (15)0.0088 (15)0.0096 (17)
C3a0.0328 (18)0.040 (2)0.027 (2)0.0037 (15)0.0046 (15)0.0021 (17)
C4a0.0297 (17)0.030 (2)0.035 (2)0.0027 (14)0.0043 (15)0.0033 (16)
C5a0.0229 (16)0.0233 (19)0.031 (2)0.0002 (13)0.0035 (13)0.0007 (15)
C6a0.0189 (15)0.0230 (19)0.0255 (18)0.0001 (13)0.0012 (12)0.0025 (14)
C7a0.0251 (16)0.0171 (17)0.0285 (18)0.0049 (13)0.0048 (14)0.0011 (14)
C8a0.0241 (16)0.0252 (19)0.0265 (18)0.0025 (13)0.0047 (13)0.0052 (15)
C9a0.0358 (18)0.030 (2)0.036 (2)0.0022 (15)0.0034 (15)0.0059 (17)
C10a0.048 (2)0.039 (2)0.037 (2)0.0017 (17)0.0051 (17)0.0165 (19)
C11a0.050 (2)0.051 (3)0.029 (2)0.0020 (18)0.0070 (17)0.0066 (19)
C12a0.039 (2)0.043 (2)0.032 (2)0.0018 (17)0.0099 (16)0.0001 (18)
C13a0.0325 (17)0.031 (2)0.0274 (19)0.0011 (15)0.0038 (14)0.0013 (16)
C14a0.071 (3)0.023 (2)0.049 (3)0.0044 (18)0.014 (2)0.0082 (19)
C15a0.048 (2)0.028 (2)0.038 (2)0.0028 (16)0.0039 (17)0.0021 (17)
S1b0.0271 (4)0.0231 (5)0.0289 (5)0.0027 (3)0.0056 (3)0.0025 (4)
O1b0.0345 (12)0.0375 (15)0.0278 (13)0.0024 (10)0.0113 (10)0.0025 (11)
O2b0.0340 (12)0.0274 (14)0.0318 (13)0.0088 (10)0.0023 (10)0.0070 (11)
O3b0.0261 (11)0.0297 (14)0.0311 (13)0.0018 (10)0.0065 (9)0.0048 (10)
N1b0.0292 (15)0.0275 (17)0.0368 (18)0.0030 (12)0.0065 (13)0.0036 (14)
N2b0.0271 (14)0.0282 (17)0.0256 (16)0.0028 (12)0.0061 (12)0.0055 (13)
C1b0.0219 (15)0.0226 (18)0.0250 (18)0.0011 (12)0.0037 (13)0.0038 (14)
C2b0.0304 (17)0.033 (2)0.0244 (18)0.0027 (15)0.0024 (14)0.0078 (16)
C3b0.0323 (18)0.032 (2)0.037 (2)0.0022 (15)0.0001 (15)0.0144 (17)
C4b0.0307 (17)0.0185 (18)0.043 (2)0.0001 (14)0.0019 (15)0.0072 (16)
C5b0.0250 (16)0.028 (2)0.0317 (19)0.0031 (14)0.0046 (14)0.0047 (16)
C6b0.0174 (15)0.0261 (19)0.0272 (18)0.0007 (13)0.0006 (13)0.0056 (15)
C7b0.0229 (16)0.0216 (18)0.0271 (19)0.0066 (13)0.0070 (13)0.0044 (14)
C8b0.0262 (16)0.034 (2)0.0254 (19)0.0015 (14)0.0048 (13)0.0076 (16)
C9b0.0302 (17)0.036 (2)0.0274 (19)0.0050 (15)0.0018 (14)0.0003 (16)
C10b0.045 (2)0.052 (3)0.028 (2)0.0105 (18)0.0043 (16)0.0006 (18)
C11b0.048 (2)0.061 (3)0.029 (2)0.0147 (19)0.0060 (17)0.011 (2)
C12b0.050 (2)0.043 (3)0.038 (2)0.0082 (18)0.0048 (17)0.016 (2)
C13b0.0337 (18)0.035 (2)0.033 (2)0.0001 (15)0.0046 (15)0.0087 (17)
C14b0.061 (2)0.037 (2)0.037 (2)0.0027 (18)0.0084 (18)0.0013 (18)
C15b0.052 (2)0.031 (2)0.047 (2)0.0061 (17)0.0114 (18)0.0137 (19)
Geometric parameters (Å, º) top
S1a—O2a1.430 (2)S1b—O2b1.434 (2)
S1a—O1a1.435 (2)S1b—O1b1.437 (2)
S1a—N1a1.599 (3)S1b—N1b1.598 (3)
S1a—C1a1.774 (4)S1b—C1b1.767 (3)
O3a—C7a1.239 (3)O3b—C7b1.239 (4)
N1a—H1Na0.91 (3)N1b—H1Nb0.81 (3)
N1a—H2Na0.91 (3)N1b—H2Nb0.95 (3)
N2a—C7a1.338 (4)N2b—C7b1.338 (4)
N2a—C8a1.440 (4)N2b—C8b1.438 (4)
N2a—H3Na0.90 (3)N2b—H3Nb0.90 (3)
C1a—C2a1.383 (4)C1b—C2b1.385 (4)
C1a—C6a1.414 (4)C1b—C6b1.403 (4)
C2a—C3a1.394 (5)C2b—C3b1.388 (5)
C2a—H2a0.9500C2b—H2b0.9500
C3a—C4a1.385 (4)C3b—C4b1.380 (5)
C3a—H3a0.9500C3b—H3b0.9500
C4a—C5a1.391 (4)C4b—C5b1.393 (4)
C4a—H4a0.9500C4b—H4b0.9500
C5a—C6a1.392 (4)C5b—C6b1.389 (4)
C5a—H5a0.9500C5b—H5b0.9500
C6a—C7a1.505 (4)C6b—C7b1.511 (4)
C8a—C13a1.395 (5)C8b—C13b1.393 (5)
C8a—C9a1.399 (4)C8b—C9b1.402 (5)
C9a—C10a1.389 (4)C9b—C10b1.388 (5)
C9a—C14a1.500 (5)C9b—C14b1.506 (5)
C10a—C11a1.382 (5)C10b—C11b1.382 (5)
C10a—H10a0.9500C10b—H10b0.9500
C11a—C12a1.371 (5)C11b—C12b1.371 (5)
C11a—H11a0.9500C11b—H11b0.9500
C12a—C13a1.393 (4)C12b—C13b1.386 (5)
C12a—H12a0.9500C12b—H12b0.9500
C13a—C15a1.514 (5)C13b—C15b1.510 (5)
C14a—H14a0.9800C14b—H14d0.9800
C14a—H14b0.9800C14b—H14e0.9800
C14a—H14c0.9800C14b—H14f0.9800
C15a—H15a0.9800C15b—H15d0.9800
C15a—H15b0.9800C15b—H15e0.9800
C15a—H15c0.9800C15b—H15f0.9800
O2a—S1a—O1a119.92 (15)O2b—S1b—O1b118.48 (13)
O2a—S1a—N1a108.01 (15)O2b—S1b—N1b107.50 (15)
O1a—S1a—N1a106.56 (15)O1b—S1b—N1b106.64 (16)
O2a—S1a—C1a105.61 (14)O2b—S1b—C1b107.20 (14)
O1a—S1a—C1a108.30 (15)O1b—S1b—C1b107.61 (14)
N1a—S1a—C1a107.98 (15)N1b—S1b—C1b109.18 (14)
S1a—N1a—H1Na109 (2)S1b—N1b—H1Nb114 (3)
S1a—N1a—H2Na110 (2)S1b—N1b—H2Nb112 (2)
H1Na—N1a—H2Na116 (3)H1Nb—N1b—H2Nb114 (3)
C7a—N2a—C8a123.8 (3)C7b—N2b—C8b124.3 (3)
C7a—N2a—H3Na115 (2)C7b—N2b—H3Nb117 (2)
C8a—N2a—H3Na121 (2)C8b—N2b—H3Nb118 (2)
C2a—C1a—C6a120.1 (3)C2b—C1b—C6b120.4 (3)
C2a—C1a—S1a118.9 (2)C2b—C1b—S1b119.1 (3)
C6a—C1a—S1a121.0 (2)C6b—C1b—S1b120.5 (2)
C1a—C2a—C3a120.5 (3)C1b—C2b—C3b120.0 (3)
C1a—C2a—H2a119.8C1b—C2b—H2b120.0
C3a—C2a—H2a119.8C3b—C2b—H2b120.0
C4a—C3a—C2a119.9 (3)C4b—C3b—C2b120.4 (3)
C4a—C3a—H3a120.0C4b—C3b—H3b119.8
C2a—C3a—H3a120.0C2b—C3b—H3b119.8
C3a—C4a—C5a119.9 (3)C3b—C4b—C5b119.6 (3)
C3a—C4a—H4a120.0C3b—C4b—H4b120.2
C5a—C4a—H4a120.0C5b—C4b—H4b120.2
C4a—C5a—C6a121.0 (3)C6b—C5b—C4b121.0 (3)
C4a—C5a—H5a119.5C6b—C5b—H5b119.5
C6a—C5a—H5a119.5C4b—C5b—H5b119.5
C5a—C6a—C1a118.6 (3)C5b—C6b—C1b118.6 (3)
C5a—C6a—C7a118.0 (3)C5b—C6b—C7b116.8 (3)
C1a—C6a—C7a123.1 (3)C1b—C6b—C7b124.3 (3)
O3a—C7a—N2a123.3 (3)O3b—C7b—N2b123.9 (3)
O3a—C7a—C6a120.1 (3)O3b—C7b—C6b120.6 (3)
N2a—C7a—C6a116.4 (3)N2b—C7b—C6b115.3 (3)
C13a—C8a—C9a122.0 (3)C13b—C8b—C9b122.0 (3)
C13a—C8a—N2a121.1 (3)C13b—C8b—N2b121.7 (3)
C9a—C8a—N2a116.9 (3)C9b—C8b—N2b116.3 (3)
C10a—C9a—C8a118.0 (3)C10b—C9b—C8b117.9 (3)
C10a—C9a—C14a121.2 (3)C10b—C9b—C14b120.7 (3)
C8a—C9a—C14a120.8 (3)C8b—C9b—C14b121.4 (3)
C11a—C10a—C9a120.9 (3)C11b—C10b—C9b120.8 (4)
C11a—C10a—H10a119.5C11b—C10b—H10b119.6
C9a—C10a—H10a119.5C9b—C10b—H10b119.6
C12a—C11a—C10a119.9 (3)C12b—C11b—C10b120.0 (3)
C12a—C11a—H11a120.1C12b—C11b—H11b120.0
C10a—C11a—H11a120.1C10b—C11b—H11b120.0
C11a—C12a—C13a121.7 (4)C11b—C12b—C13b121.6 (4)
C11a—C12a—H12a119.1C11b—C12b—H12b119.2
C13a—C12a—H12a119.1C13b—C12b—H12b119.2
C12a—C13a—C8a117.4 (3)C12b—C13b—C8b117.7 (3)
C12a—C13a—C15a119.0 (3)C12b—C13b—C15b119.9 (3)
C8a—C13a—C15a123.6 (3)C8b—C13b—C15b122.4 (3)
C9a—C14a—H14a109.5C9b—C14b—H14d109.5
C9a—C14a—H14b109.5C9b—C14b—H14e109.5
H14a—C14a—H14b109.5H14d—C14b—H14e109.5
C9a—C14a—H14c109.5C9b—C14b—H14f109.5
H14a—C14a—H14c109.5H14d—C14b—H14f109.5
H14b—C14a—H14c109.5H14e—C14b—H14f109.5
C13a—C15a—H15a109.5C13b—C15b—H15d109.5
C13a—C15a—H15b109.5C13b—C15b—H15e109.5
H15a—C15a—H15b109.5H15d—C15b—H15e109.5
C13a—C15a—H15c109.5C13b—C15b—H15f109.5
H15a—C15a—H15c109.5H15d—C15b—H15f109.5
H15b—C15a—H15c109.5H15e—C15b—H15f109.5
O2a—S1a—C1a—C2a131.9 (2)O2b—S1b—C1b—C2b136.2 (2)
O1a—S1a—C1a—C2a2.2 (3)O1b—S1b—C1b—C2b7.7 (3)
N1a—S1a—C1a—C2a112.8 (3)N1b—S1b—C1b—C2b107.6 (3)
O2a—S1a—C1a—C6a44.5 (3)O2b—S1b—C1b—C6b42.5 (3)
O1a—S1a—C1a—C6a174.2 (2)O1b—S1b—C1b—C6b171.0 (2)
N1a—S1a—C1a—C6a70.8 (3)N1b—S1b—C1b—C6b73.6 (3)
C6a—C1a—C2a—C3a0.9 (4)C6b—C1b—C2b—C3b2.0 (4)
S1a—C1a—C2a—C3a177.4 (2)S1b—C1b—C2b—C3b179.3 (2)
C1a—C2a—C3a—C4a0.5 (5)C1b—C2b—C3b—C4b0.5 (5)
C2a—C3a—C4a—C5a0.5 (5)C2b—C3b—C4b—C5b1.0 (5)
C3a—C4a—C5a—C6a1.1 (4)C3b—C4b—C5b—C6b0.9 (4)
C4a—C5a—C6a—C1a0.7 (4)C4b—C5b—C6b—C1b0.5 (4)
C4a—C5a—C6a—C7a173.3 (3)C4b—C5b—C6b—C7b175.1 (3)
C2a—C1a—C6a—C5a0.3 (4)C2b—C1b—C6b—C5b1.9 (4)
S1a—C1a—C6a—C5a176.7 (2)S1b—C1b—C6b—C5b179.3 (2)
C2a—C1a—C6a—C7a173.9 (3)C2b—C1b—C6b—C7b176.2 (3)
S1a—C1a—C6a—C7a9.7 (4)S1b—C1b—C6b—C7b5.1 (4)
C8a—N2a—C7a—O3a7.6 (5)C8b—N2b—C7b—O3b8.8 (5)
C8a—N2a—C7a—C6a167.9 (3)C8b—N2b—C7b—C6b166.0 (3)
C5a—C6a—C7a—O3a115.4 (3)C5b—C6b—C7b—O3b114.4 (3)
C1a—C6a—C7a—O3a58.3 (4)C1b—C6b—C7b—O3b59.9 (4)
C5a—C6a—C7a—N2a60.2 (4)C5b—C6b—C7b—N2b60.5 (3)
C1a—C6a—C7a—N2a126.1 (3)C1b—C6b—C7b—N2b125.2 (3)
C7a—N2a—C8a—C13a61.1 (4)C7b—N2b—C8b—C13b63.9 (4)
C7a—N2a—C8a—C9a119.3 (3)C7b—N2b—C8b—C9b116.4 (3)
C13a—C8a—C9a—C10a2.3 (5)C13b—C8b—C9b—C10b0.9 (5)
N2a—C8a—C9a—C10a178.1 (3)N2b—C8b—C9b—C10b179.5 (3)
C13a—C8a—C9a—C14a178.6 (3)C13b—C8b—C9b—C14b177.9 (3)
N2a—C8a—C9a—C14a1.0 (4)N2b—C8b—C9b—C14b1.8 (4)
C8a—C9a—C10a—C11a1.2 (5)C8b—C9b—C10b—C11b0.3 (5)
C14a—C9a—C10a—C11a179.8 (3)C14b—C9b—C10b—C11b178.5 (3)
C9a—C10a—C11a—C12a0.2 (5)C9b—C10b—C11b—C12b0.2 (5)
C10a—C11a—C12a—C13a0.6 (5)C10b—C11b—C12b—C13b0.1 (5)
C11a—C12a—C13a—C8a0.5 (5)C11b—C12b—C13b—C8b0.4 (5)
C11a—C12a—C13a—C15a179.0 (3)C11b—C12b—C13b—C15b179.0 (3)
C9a—C8a—C13a—C12a2.0 (5)C9b—C8b—C13b—C12b1.0 (5)
N2a—C8a—C13a—C12a178.4 (3)N2b—C8b—C13b—C12b179.4 (3)
C9a—C8a—C13a—C15a177.5 (3)C9b—C8b—C13b—C15b178.4 (3)
N2a—C8a—C13a—C15a2.1 (5)N2b—C8b—C13b—C15b1.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1a—H1Na···O2bi0.91 (3)2.17 (3)2.891 (4)135 (3)
N2a—H3Na···O3bii0.90 (3)2.08 (3)2.971 (3)174 (3)
N1b—H1Nb···O1aiii0.81 (3)2.58 (3)2.996 (3)114 (3)
N1b—H2Nb···O1bii0.95 (3)2.04 (3)2.941 (4)157 (3)
N2b—H3Nb···O3aiv0.90 (3)2.03 (3)2.921 (4)170 (3)
N1a—H2Na···O3a0.91 (3)2.04 (3)2.863 (4)151 (3)
N1b—H1Nb···O3b0.81 (3)2.33 (4)2.993 (4)139 (3)
C2a—H2a···O1a0.952.492.896 (5)106
C2b—H2b···O1b0.952.482.885 (4)105
C15a—H15a···O3a0.982.572.971 (4)105
C15b—H15f···N2b0.982.592.958 (5)102
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+2, y+1, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC15H16N2O3SC15H16N2O3SC15H16N2O3S
Mr304.36304.36304.36
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cTriclinic, P1
Temperature (K)173173173
a, b, c (Å)12.842 (7), 15.153 (9), 7.572 (4)11.597 (9), 7.450 (3), 16.324 (13)7.968 (3), 8.509 (5), 21.510 (11)
α, β, γ (°)90, 91.16 (4), 9090, 97.29 (3), 9084.30 (2), 82.46 (3), 88.66 (3)
V3)1473.2 (14)1399.0 (17)1438.5 (12)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.230.240.24
Crystal size (mm)0.40 × 0.04 × 0.020.20 × 0.10 × 0.060.12 × 0.07 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Multi-scan
(SORTAV; Blessing, 1997)
Multi-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.913, 0.9950.953, 0.9860.972, 0.986
No. of measured, independent and
observed reflections
9490, 2583, 1926 [I > 2σ(I)]4440, 2423, 1767 [I > 2σ(I)]9182, 5044, 3197 [(I) > 2.0 σ(I)]
Rint0.0590.0480.062
(sin θ/λ)max1)0.5970.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.114, 1.09 0.055, 0.154, 1.05 0.050, 0.134, 1.02
No. of reflections258324235044
No. of parameters200201401
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.520.31, 0.410.27, 0.39

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H3N···O3i0.87 (3)2.08 (3)2.941 (3)170 (2)
N1—H2N···O1ii0.84 (3)2.13 (3)2.963 (3)171 (3)
N1—H1N···O30.92 (3)2.04 (3)2.850 (3)146 (2)
C2—H2···O10.952.472.877 (4)105
C4—H4···O1iii0.952.533.268 (3)134
C14—H14D···N20.982.362.851 (3)110
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y+1, z; (iii) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (4)2.35 (4)3.131 (4)153 (3)
N2—H3N···O3ii0.76 (3)2.32 (3)3.022 (3)155 (3)
N1—H2N···O30.85 (4)2.14 (4)2.888 (4)146 (3)
C2—H2···O10.952.502.902 (4)106
C13—H13···O30.952.352.914 (4)118
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1a—H1Na···O2bi0.91 (3)2.17 (3)2.891 (4)135 (3)
N2a—H3Na···O3bii0.90 (3)2.08 (3)2.971 (3)174 (3)
N1b—H1Nb···O1aiii0.81 (3)2.58 (3)2.996 (3)114 (3)
N1b—H2Nb···O1bii0.95 (3)2.04 (3)2.941 (4)157 (3)
N2b—H3Nb···O3aiv0.90 (3)2.03 (3)2.921 (4)170 (3)
N1a—H2Na···O3a0.91 (3)2.04 (3)2.863 (4)151 (3)
N1b—H1Nb···O3b0.81 (3)2.33 (4)2.993 (4)139 (3)
C2a—H2a···O1a0.952.492.896 (5)106
C2b—H2b···O1b0.952.482.885 (4)105
C15a—H15a···O3a0.982.572.971 (4)105
C15b—H15f···N2b0.982.592.958 (5)102
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+2, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds