Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The two title dinuclear copper(II) complexes, [Cu2Cl4(C17H20Cl2N2)2], (I), and [Cu2Cl4(C19H22N2O4)2], (II), have similar coordination environments. In each complex, the asymmetric unit consists of one half-mol­ecule and the two copper centres are bridged by a pair of Cl atoms, resulting in complexes with centrosymmetric structures containing Cu(μ-Cl)2Cu paral­lelogram cores; the Cu...Cu separations and Cu—Cl—Cu angles are 3.4285 (8) Å and 83.36 (3)°, respectively, for (I), and 3.565 (2) Å and 84.39 (7)° for (II). Each Cu atom is five-coordinated and the coordination geometry around the Cu atom is best described as a distorted square-pyramid with a τ value of 0.155 (3) for (I) and 0.092 (7) for (II). The apical Cu—­Cl bond length is 2.852 (1) Å for (I) and 2.971 (2) Å for (II). The basal Cu—Cl and Cu—N average bonds lengths are 2.2673 (9) and 2.030 (2) Å, respectively, for (I), and 2.280 (2) and 2.038 (6) Å for (II). The mol­ecules of (I) are linked by one C—H...Cl hydrogen bond into a complex [10\overline{1}] sheet. The mol­ecules of (II) are linked by one C—H...Cl and one N—H...O hydrogen bond into a complex [100] sheet.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107058519/hj3060sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107058519/hj3060Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107058519/hj3060IIsup3.hkl
Contains datablock II

CCDC references: 652293; 654265

Comment top

Dinuclear transition metal complexes have received much attention because of their relevance as models for active sites of biomolecules, such as hemocyanin, tyrosinase and copper oxidases (Pradeep et al., 2005; Sorrell, 1989), and also because of the correlation between the structure and the magnetic behaviour (Schuitema et al., 2002; Rodríguez et al., 2000). Among these dinuclear transition metal complexes, some anions, such as OH-, RO-, RCO2-, Cl- and Br-, are often used as bridging ligands (Christou et al., 2000). For dichloro-bridged dinuclear copper systems, many complexes have been reported in the literature and different magnetic behaviours are observed (Rodríguez et al., 2000; Schuitema et al., 2002; Tuna et al., 1999), and the magneto-structural correlation, which relates the magnetic interaction to ϕ/R, has been established (Marsh et al., 1982). Copper complexes containing diimines also have been extensively studied and reported owing to their potential applications (Alvesa et al., 2004). Previously, our group has reported the structures of some transition metal complexes with diimines (Han et al., 2006; Liu et al., 2007; Xia et al., 2007; Yang et al., 2007). For this reason, we have synthesized two new dichloro-bridged dinuclear copper complexes with diimines, [Cu2Cl2(C17H20N2Cl2)2Cl2], (I), and [Cu2Cl2(C19H22N2O4)2Cl2], (II). In this paper, we report the synthesis and structures of complexes (I) and (II).

Complexes (I) and (II) have similar coordination environments (Fig. 1 and Fig. 2). In each complex, the asymmetric unit consists of one half-molecule; two copper centers are bridged by a pair of chloride atoms, resulting in a complex with a centrosymmetric structure containing a parallelogram Cu(µ-Cl)2Cu core. The Cu···Cu separation of 3.4285 (8) Å for (I) is smaller than those values reported in two dichloro-bridged dinuclear copper(II) complexes, viz. [Cu2 (5-aminomethyl-3-methylpyrazole)2Cl4] [Cu···Cu = 3.479 (4) Å; Schuitema et al., 2002] and {[CuL2Cl2]2[ClO4]2} [where L is 1-(imidazol-4-ylmethyl)-l,5-diazacyclooctane; Cu···Cu = 3.494 (8) Å; Bu et al., 2001], in which magnetic coupling between the copper centers can be observed; but the Cu···Cu separation of 3.565 (2) Å for (II) is longer than those of two dichloro-bridged dinuclear copper(II) complexes mentioned above. The Cu—Cl—Cu angles are 83.36 (3)° for (I) and 84.39 (7)° for (II); these values are smaller than those of the two dichloro-bridged dinuclear copper(II) complexes mentioned above, in which the Cu—Cl—Cu angles range from 85.33 (15) to 88.81 (5)°. Each Cu atom is five-coordinated by two N atoms of one ligand and three Cl atoms, and the coordination polyhedron around the Cu atom may be described as a slightly distorted square pyramid with τ values (Addison et al., 1984) of 0.155 (3) for (I) and 0.092 (7) for (II), where τ is defined as (β - α)/60, and β and α are the largest coordination angles (τ = 0 for a regular square-pyramidal geometry and τ = 1 for trigonal–bipyramidal geometry). The apical position is occupied by one elongated bridging Cl atom, and the apical Cu—Cl bond distances are 2.852 (1) Å for (I), and 2.971 (2) Å for (II); these values are longer than those of the two dichloro-bridged dinuclear copper(II) complexes mentioned above, in which the apical Cu—Cl bond distances range from 2.6571 (14) to 2.829 (4) Å. The basal planes are defined by atoms Cl1, Cl2, N1 and N2; atoms Cu1 are shifted by 0.106 (1) Å for (I) and 0.050 (3) Å for (II) from the basal planes toward the apical Cl1A atom. The basal Cu—Cl and Cu–N average bond lengths are 2.2673 (9) and 2.030 (2) Å in (I), and 2.280 (2) and 2.038 (6) Å in (II) (see in Table 1 and Table 3).

Generally, the dichloro-bridged dinuclear copper complexes with square-pyramidal geometry exhibit three different geometries with regard to the relative arrangement of square pyramids, viz. perpendicular bases (type I), parallel bases (type II) and coplanar bases (type III) (Rodríguez et al., 2000). In the parallel bases case, two square pyramids share a base-to-apex edge, so that a Cl atom situated at the vertex of one base becomes the apical vertex of the other square pyramid. The symmetric arrangements of the Cu(µ-Cl)2Cu cores in complexes (I) and (II) belong to type II; the two intramolecular basal planes are strictly parallel, with an interplanar spacing of 2.731 (6) Å for (I) and 2.82 (3) Å for (II), corresponding to a plane offset of 2.07 (1) Å for (I) and 2.18 (4) Å for (II); the dihedral angles between the parallelogram Cu(µ-Cl)2Cu core and the basal plane are 87.27 (4)° for (I) and 86.85 (8)° for (II).

Some theoretical analysis and real experiments concerning the magneto-structural correlation for dichloro-bridged dinuclear copper(II) complexes can be found in the literature (Schuitema et al., 2002; Rodríguez et al., 2000; Tuna et al., 1999). Marsh et al. (1982) have shown that the exchange coupling interaction depends on the magnitude of the angle at the Cu—Cl—Cu bridge, ϕ, as well as the apical Cu—Cl bond length, R. It was found that for values of the quotient ϕ/R that are lower than 32.6° Å-1 and higher than 34.88° Å-1, the exchange interaction is antiferromagnetic. For values falling between these limits, the exchange interaction was found to be ferromagnetic. In the cases of (I) and (II), the values of the quotient ϕ/R are 29.23 (2) and 28.40 (4)° Å-1, respectively, both quotients are below the border value of 32.6° Å-1, suggesting an antiferromagnetic interaction between the two copper(II) ions.

In the crystal structures of (I) and (II), the molecules are stabilized by a pair of intramolecular N—H···Cl hydrogen bonds (Figs. 1 and 2, and Tables 2 and 4). In (I), the molecules are linked by a single intermolecular C—H···Cl hydrogen bond, atom C11 at (x, y, z) in molecule centred at (1/2, 1/2, 1/2) acts as hydrogen-bond donor, via H11b, to atom Cl2 at (3/2 - x, -1/2 + y, 3/2 - z) in the molecule centred at (1, 0, 1), and propagation is via inversion, the screw axis and translation generating a complex sheet in [101] (Fig. 3 and Table 2).

In (II), the molecules are linked by one intermolecular C—H···Cl and one N—H···O hydrogen bonds, atoms C12 and N2 at (x, y, z) in the molecule centred at (1/2, 1/2, 1/2) act as hydrogen-bond donors, via H12B [12 A in Table 4] and H2, to atoms Cl2 and O3 at (3/2 - x, -1/2 + y, 3/2 - z) [or (-x + 1, y - 1/2, -z + 1/2)?] in the molecule centred at [1, 0, 1], and propagation via a screw axis and translation generates a complex sheet in [100] (Fig. 4 and Table 4).

Related literature top

For related literature, see: Addison et al. (1984); Alvesa et al. (2004); Bu et al. (2001); Christou et al. (2000); Han et al. (2006); Liu et al. (2007); Marsh et al. (1982); Pradeep et al. (2005); Rodríguez et al. (2000); Schuitema et al. (2002); Sorrell (1989); Tuna et al. (1999); Xia et al. (2007); Yang et al. (2007).

Experimental top

For the preparation of complex (I), to a solution containing N,N-bis(4-chlorobenzyl)propane-1,2-diamine (0.96 g, 3 mmol) and ethanol (20 ml), a solution of copper chloride (0.48 g, 3 mmol) and ethanol(10 ml) was added dropwise with stirring. The reaction mixture was stirred for 3 h at 333–343 K and then left to cool at room temperature; the solid obtained was filtered off, washed successively with chloroform (3 × 3 ml) and ethanol (3 × 3 ml), and dried at room temperature. Green crystals of complex (I) suitable for X-ray structure analysis were obtained by slow evaporation of a dimethylformamide–ethanol (1:10) solution containing the product over a period of three weeks (yield 0.98 g, 68%; m.p.466–469 K). Analysis calculated for [Cu2Cl4(C17H20N2Cl2)2]: C 44.61, H 4.40, N 6.12%; found: C 45.22, H 4.28, N 5.88%. IR (KBr, cm-1): 3450, 3162, 2946, 1599, 1551, 1492, 1440, 1089, 1013, 922, 810, 704, 566.

In same method, green crystals of complex(II) suitable for X-ray structure analysis also were obtained (yield 1.18 g, 71%; m.p.509– 512 K). Analysis calculated for [Cu2Cl4(C19H22N2O4)2]: C 47.86%, H 4.65%, N 5.87%; found: C 48.48%, H 4.49%, N 6.02%. IR(KBr, disk,cm-1): 3464, 3250, 2932, 1599, 1553, 1493,1447, 1252, 1034, 922, 812, 767, 704.

Refinement top

All H atoms were located in difference Fourier maps and treated as riding atoms, with C—H distances of 0.98 Å (methine), 0.93 Å (aryl), 0.96 Å (methyl) and 0.97 Å (methylene), N—H distances of 0.91 Å, and with Uiso(H) values of 1.2Ueq(C,N) (aryl, methylene, imine) and 1.5Ueq(C) (methyl). The value of Rint for complex (II) is high (Rint = 0.162) because of the poor crystal quality, resulting in broad diffraction peaks.

Computing details top

For both compounds, data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. For clarity, H atoms have been omitted. Dashed lines indicate hydrogen bonds. [Symmetry code: (*) -x + 1, -y + 1, -z + 1.]
[Figure 2] Fig. 2. The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. For clarity, H atoms have been omitted. Dashed lines indicate hydrogen bonds. [Symmetry code: (*) -x + 1, -y + 1, -z + 1.]
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of a [101] sheet. For clarity, H atoms have been omitted. Dashed lines indicate hydrogen bonds. [Symmetry code: (*) -x + 3/2, y - 1/2, -z + 3/2.]
[Figure 4] Fig. 4. Part of the crystal structure of compound (II), showing the formation of a [100] sheet. For clarity, H atoms have been omitted. Dashed lines indicate hydrogen bonds. [Symmetry code: (*) -x + 1, y - 1/2, -z + 1/2.]
(I) di-µ-chlorido-bis{[N,N'-bis(4-chlorobenzyl)propane-1,2- diamine]chloridocopper(II)} top
Crystal data top
[Cu2Cl4(C17H20Cl2N2)2]F(000) = 932
Mr = 915.38Dx = 1.568 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3324 reflections
a = 14.4217 (15) Åθ = 2.6–27.0°
b = 9.5445 (13) ŵ = 1.68 mm1
c = 15.6198 (19) ÅT = 298 K
β = 115.647 (2)°Block, green
V = 1938.2 (4) Å30.54 × 0.50 × 0.46 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3417 independent reflections
Radiation source: fine-focus sealed tube2484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1517
Tmin = 0.464, Tmax = 0.512k = 116
8896 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0306P)2 + 0.7906P]
where P = (Fo2 + 2Fc2)/3
3417 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Cu2Cl4(C17H20Cl2N2)2]V = 1938.2 (4) Å3
Mr = 915.38Z = 2
Monoclinic, P21/nMo Kα radiation
a = 14.4217 (15) ŵ = 1.68 mm1
b = 9.5445 (13) ÅT = 298 K
c = 15.6198 (19) Å0.54 × 0.50 × 0.46 mm
β = 115.647 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3417 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2484 reflections with I > 2σ(I)
Tmin = 0.464, Tmax = 0.512Rint = 0.038
8896 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.06Δρmax = 0.39 e Å3
3417 reflectionsΔρmin = 0.28 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.56093 (3)0.40517 (4)0.60255 (3)0.03284 (13)
Cl30.02417 (7)0.36440 (11)0.64146 (8)0.0634 (3)
Cl40.64329 (11)0.57123 (13)1.04591 (9)0.0884 (4)
Cl20.71211 (6)0.39329 (8)0.59008 (6)0.0409 (2)
Cl10.54872 (6)0.64141 (8)0.59685 (6)0.0408 (2)
N10.41881 (18)0.3830 (2)0.59727 (18)0.0321 (6)
H10.37410.42880.54430.038*
N20.58206 (18)0.2072 (2)0.65562 (18)0.0341 (6)
H20.59800.15460.61520.041*
C10.3954 (2)0.2317 (3)0.5811 (2)0.0402 (8)
H1A0.38310.20740.51670.048*
H1B0.33370.21040.58870.048*
C20.4843 (2)0.1465 (3)0.6509 (2)0.0378 (8)
H2A0.48520.15600.71370.045*
C30.4726 (3)0.0085 (3)0.6246 (3)0.0621 (11)
H3A0.46530.01940.56090.093*
H3B0.41270.04510.62880.093*
H3C0.53240.05860.66760.093*
C40.4061 (2)0.4434 (3)0.6791 (2)0.0397 (8)
H4A0.42270.54240.68370.048*
H4B0.45470.39870.73690.048*
C50.2992 (2)0.4263 (3)0.6723 (2)0.0362 (8)
C60.2757 (3)0.3200 (4)0.7195 (2)0.0487 (9)
H60.32770.25970.75810.058*
C70.1771 (3)0.3006 (4)0.7109 (3)0.0514 (9)
H70.16240.22720.74230.062*
C80.1014 (2)0.3911 (3)0.6555 (2)0.0403 (8)
C90.1223 (2)0.4988 (3)0.6087 (2)0.0415 (8)
H90.07040.56050.57190.050*
C100.2204 (2)0.5156 (3)0.6163 (2)0.0389 (8)
H100.23400.58780.58350.047*
C110.6707 (2)0.1899 (3)0.7513 (2)0.0419 (8)
H11A0.73420.20940.74630.050*
H11B0.67320.09350.77170.050*
C120.6634 (2)0.2852 (3)0.8247 (2)0.0351 (7)
C130.6297 (2)0.2365 (3)0.8902 (2)0.0428 (8)
H130.61260.14230.88940.051*
C140.6210 (3)0.3239 (4)0.9559 (2)0.0485 (9)
H140.59730.28980.99870.058*
C150.6478 (3)0.4636 (4)0.9580 (2)0.0485 (9)
C160.6818 (3)0.5153 (4)0.8952 (3)0.0485 (9)
H160.69950.60930.89700.058*
C170.6894 (2)0.4259 (3)0.8287 (2)0.0433 (8)
H170.71240.46080.78580.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0315 (2)0.0285 (2)0.0380 (2)0.00195 (16)0.01460 (18)0.00274 (17)
Cl30.0484 (6)0.0729 (7)0.0793 (8)0.0070 (5)0.0374 (6)0.0075 (5)
Cl40.1269 (11)0.0784 (8)0.0701 (8)0.0054 (7)0.0522 (8)0.0269 (6)
Cl20.0319 (4)0.0447 (5)0.0463 (5)0.0029 (3)0.0172 (4)0.0037 (4)
Cl10.0483 (5)0.0277 (4)0.0456 (5)0.0011 (3)0.0196 (4)0.0034 (3)
N10.0276 (13)0.0317 (15)0.0323 (15)0.0003 (10)0.0087 (12)0.0028 (11)
N20.0398 (15)0.0279 (14)0.0352 (16)0.0053 (11)0.0168 (13)0.0007 (11)
C10.043 (2)0.040 (2)0.039 (2)0.0101 (15)0.0188 (17)0.0075 (15)
C20.048 (2)0.0312 (18)0.0366 (19)0.0052 (15)0.0206 (17)0.0005 (14)
C30.086 (3)0.035 (2)0.072 (3)0.0058 (18)0.040 (3)0.0029 (18)
C40.0383 (19)0.041 (2)0.038 (2)0.0031 (14)0.0149 (16)0.0040 (15)
C50.0352 (18)0.0377 (19)0.0348 (19)0.0024 (14)0.0143 (16)0.0036 (15)
C60.048 (2)0.053 (2)0.045 (2)0.0156 (17)0.0207 (19)0.0130 (18)
C70.061 (2)0.050 (2)0.056 (2)0.0002 (18)0.037 (2)0.0118 (18)
C80.0390 (19)0.045 (2)0.040 (2)0.0017 (16)0.0204 (17)0.0097 (16)
C90.039 (2)0.038 (2)0.042 (2)0.0070 (14)0.0133 (17)0.0002 (15)
C100.043 (2)0.0337 (19)0.039 (2)0.0008 (15)0.0166 (17)0.0000 (15)
C110.0400 (19)0.0366 (19)0.045 (2)0.0133 (15)0.0147 (17)0.0104 (16)
C120.0300 (17)0.0380 (19)0.0298 (18)0.0056 (14)0.0057 (15)0.0031 (14)
C130.049 (2)0.0336 (19)0.039 (2)0.0019 (15)0.0127 (17)0.0076 (15)
C140.057 (2)0.054 (2)0.037 (2)0.0022 (18)0.0220 (19)0.0035 (17)
C150.053 (2)0.047 (2)0.039 (2)0.0031 (17)0.0142 (18)0.0049 (17)
C160.057 (2)0.033 (2)0.050 (2)0.0066 (16)0.0184 (19)0.0021 (17)
C170.0411 (19)0.046 (2)0.041 (2)0.0028 (15)0.0166 (17)0.0079 (16)
Geometric parameters (Å, º) top
Cu1—N12.026 (2)C4—H4B0.9700
Cu1—N22.033 (2)C5—C61.380 (4)
Cu1—Cl12.2604 (9)C5—C101.386 (4)
Cu1—Cl22.2742 (9)C6—C71.382 (4)
Cu1—Cl1i2.852 (1)C6—H60.9300
Cu1—Cu1i3.4285 (8)C7—C81.367 (5)
Cl3—C81.747 (3)C7—H70.9300
Cl4—C151.739 (4)C8—C91.368 (4)
Cl1—Cu1i2.852 (1)C9—C101.377 (4)
N1—C11.480 (4)C9—H90.9300
N1—C41.484 (4)C10—H100.9300
N1—H10.9100C11—C121.503 (4)
N2—C21.496 (4)C11—H11A0.9700
N2—C111.497 (4)C11—H11B0.9700
N2—H20.9100C12—C131.388 (4)
C1—C21.511 (4)C12—C171.389 (4)
C1—H1A0.9700C13—C141.371 (4)
C1—H1B0.9700C13—H130.9300
C2—C31.525 (4)C14—C151.385 (5)
C2—H2A0.9800C14—H140.9300
C3—H3A0.9600C15—C161.365 (5)
C3—H3B0.9600C16—C171.384 (5)
C3—H3C0.9600C16—H160.9300
C4—C51.508 (4)C17—H170.9300
C4—H4A0.9700
N1—Cu1—N283.69 (9)N1—C4—H4A108.8
N1—Cu1—Cl192.41 (7)C5—C4—H4A108.8
N2—Cu1—Cl1159.84 (8)N1—C4—H4B108.8
N1—Cu1—Cl2169.01 (7)C5—C4—H4B108.8
N2—Cu1—Cl290.49 (7)H4A—C4—H4B107.7
Cl1—Cu1—Cl296.18 (3)C6—C5—C10117.8 (3)
N1—Cu1—Cl1i82.32 (7)C6—C5—C4121.4 (3)
N2—Cu1—Cl1i102.40 (7)C10—C5—C4120.8 (3)
Cl1—Cu1—Cl1i96.64 (3)C5—C6—C7121.8 (3)
Cl2—Cu1—Cl1i89.87 (3)C5—C6—H6119.1
N1—Cu1—Cu1i85.22 (7)C7—C6—H6119.1
N2—Cu1—Cu1i142.90 (7)C8—C7—C6118.8 (3)
Cl1—Cu1—Cu1i55.73 (2)C8—C7—H7120.6
Cl2—Cu1—Cu1i93.96 (3)C6—C7—H7120.6
Cl1i—Cu1—Cu1i40.912 (18)C7—C8—C9120.9 (3)
Cu1—Cl1—Cu1i83.36 (3)C7—C8—Cl3119.2 (3)
C1—N1—C4115.0 (2)C9—C8—Cl3119.9 (3)
C1—N1—Cu1105.09 (17)C8—C9—C10119.8 (3)
C4—N1—Cu1115.12 (18)C8—C9—H9120.1
C1—N1—H1107.1C10—C9—H9120.1
C4—N1—H1107.1C9—C10—C5120.9 (3)
Cu1—N1—H1107.1C9—C10—H10119.5
C2—N2—C11112.8 (2)C5—C10—H10119.5
C2—N2—Cu1111.59 (18)N2—C11—C12112.5 (2)
C11—N2—Cu1114.93 (18)N2—C11—H11A109.1
C2—N2—H2105.5C12—C11—H11A109.1
C11—N2—H2105.5N2—C11—H11B109.1
Cu1—N2—H2105.5C12—C11—H11B109.1
N1—C1—C2110.0 (2)H11A—C11—H11B107.8
N1—C1—H1A109.7C13—C12—C17117.7 (3)
C2—C1—H1A109.7C13—C12—C11121.5 (3)
N1—C1—H1B109.7C17—C12—C11120.8 (3)
C2—C1—H1B109.7C14—C13—C12121.5 (3)
H1A—C1—H1B108.2C14—C13—H13119.2
N2—C2—C1108.3 (2)C12—C13—H13119.2
N2—C2—C3112.4 (3)C13—C14—C15119.2 (3)
C1—C2—C3111.5 (3)C13—C14—H14120.4
N2—C2—H2A108.1C15—C14—H14120.4
C1—C2—H2A108.1C16—C15—C14121.0 (3)
C3—C2—H2A108.1C16—C15—Cl4120.1 (3)
C2—C3—H3A109.5C14—C15—Cl4118.8 (3)
C2—C3—H3B109.5C15—C16—C17119.1 (3)
H3A—C3—H3B109.5C15—C16—H16120.5
C2—C3—H3C109.5C17—C16—H16120.5
H3A—C3—H3C109.5C16—C17—C12121.5 (3)
H3B—C3—H3C109.5C16—C17—H17119.2
N1—C4—C5113.6 (2)C12—C17—H17119.2
N1—Cu1—Cl1—Cu1i82.54 (7)N1—C1—C2—N244.7 (3)
N2—Cu1—Cl1—Cu1i160.8 (2)N1—C1—C2—C3168.9 (3)
Cl2—Cu1—Cl1—Cu1i90.59 (3)C1—N1—C4—C558.2 (3)
Cl1i—Cu1—Cl1—Cu1i0.0Cu1—N1—C4—C5179.4 (2)
N2—Cu1—N1—C130.59 (19)N1—C4—C5—C698.5 (4)
Cl1—Cu1—N1—C1169.26 (18)N1—C4—C5—C1080.0 (4)
Cl2—Cu1—N1—C127.8 (5)C10—C5—C6—C70.9 (5)
Cl1i—Cu1—N1—C172.88 (18)C4—C5—C6—C7177.7 (3)
Cu1i—Cu1—N1—C1113.95 (18)C5—C6—C7—C81.2 (5)
N2—Cu1—N1—C496.9 (2)C6—C7—C8—C90.3 (5)
Cl1—Cu1—N1—C463.2 (2)C6—C7—C8—Cl3178.2 (3)
Cl2—Cu1—N1—C4155.3 (3)C7—C8—C9—C100.9 (5)
Cl1i—Cu1—N1—C4159.6 (2)Cl3—C8—C9—C10176.9 (2)
Cu1i—Cu1—N1—C4118.5 (2)C8—C9—C10—C51.3 (5)
N1—Cu1—N2—C27.23 (19)C6—C5—C10—C90.4 (5)
Cl1—Cu1—N2—C287.0 (3)C4—C5—C10—C9178.9 (3)
Cl2—Cu1—N2—C2163.42 (19)C2—N2—C11—C1272.7 (3)
Cl1i—Cu1—N2—C273.45 (19)Cu1—N2—C11—C1256.7 (3)
Cu1i—Cu1—N2—C266.2 (2)N2—C11—C12—C13101.1 (3)
N1—Cu1—N2—C11122.7 (2)N2—C11—C12—C1778.3 (4)
Cl1—Cu1—N2—C1143.0 (3)C17—C12—C13—C140.8 (5)
Cl2—Cu1—N2—C1166.60 (19)C11—C12—C13—C14178.7 (3)
Cl1i—Cu1—N2—C11156.57 (18)C12—C13—C14—C151.0 (5)
Cu1i—Cu1—N2—C11163.82 (15)C13—C14—C15—C160.6 (5)
C4—N1—C1—C278.2 (3)C13—C14—C15—Cl4176.5 (3)
Cu1—N1—C1—C249.4 (3)C14—C15—C16—C170.1 (5)
C11—N2—C2—C1148.8 (3)Cl4—C15—C16—C17176.9 (3)
Cu1—N2—C2—C117.7 (3)C15—C16—C17—C120.0 (5)
C11—N2—C2—C387.4 (3)C13—C12—C17—C160.3 (5)
Cu1—N2—C2—C3141.5 (2)C11—C12—C17—C16179.2 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.912.573.450 (3)164
C11—H11B···Cl2ii0.972.823.659 (3)145
C13—H13···Cl3iii0.932.893.810 (3)170
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y1/2, z+3/2.
(II) di-µ-chlorido-bis{[N,N'-bis(3,4-methylenedioxybenzyl)propane-1,2- diamine]chloridocopper(II)} top
Crystal data top
[Cu2Cl4(C19H22N2O4)2]F(000) = 980
Mr = 953.65Dx = 1.487 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2094 reflections
a = 12.2965 (13) Åθ = 2.5–24.1°
b = 11.0554 (12) ŵ = 1.30 mm1
c = 15.822 (2) ÅT = 298 K
β = 98.140 (2)°Block, green
V = 2129.2 (4) Å30.45 × 0.37 × 0.31 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3730 independent reflections
Radiation source: fine-focus sealed tube2008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.162
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 146
Tmin = 0.592, Tmax = 0.688k = 1313
10028 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.059P)2 + 3.0479P]
where P = (Fo2 + 2Fc2)/3
3730 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 1.12 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Cu2Cl4(C19H22N2O4)2]V = 2129.2 (4) Å3
Mr = 953.65Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.2965 (13) ŵ = 1.30 mm1
b = 11.0554 (12) ÅT = 298 K
c = 15.822 (2) Å0.45 × 0.37 × 0.31 mm
β = 98.140 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3730 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2008 reflections with I > 2σ(I)
Tmin = 0.592, Tmax = 0.688Rint = 0.162
10028 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.217H-atom parameters constrained
S = 1.14Δρmax = 1.12 e Å3
3730 reflectionsΔρmin = 0.64 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.54541 (8)0.43043 (8)0.40956 (6)0.0360 (3)
Cl10.56158 (18)0.63216 (17)0.43920 (13)0.0444 (6)
Cl20.37692 (16)0.44497 (17)0.32916 (12)0.0384 (5)
O11.1333 (6)0.2222 (7)0.5665 (5)0.079 (2)
O21.1506 (6)0.2989 (7)0.7031 (4)0.081 (2)
O30.6540 (5)0.6293 (6)0.1355 (4)0.067 (2)
O40.8296 (5)0.5707 (6)0.1196 (4)0.0583 (17)
N10.6829 (5)0.3962 (6)0.4935 (4)0.0381 (16)
H10.67130.42870.54430.046*
N20.5678 (5)0.2588 (5)0.3672 (4)0.0348 (16)
H20.50910.21590.38000.042*
C10.6828 (7)0.2600 (7)0.5049 (5)0.042 (2)
H1A0.62470.23630.53710.050*
H1B0.75240.23370.53620.050*
C20.6649 (7)0.2016 (7)0.4170 (5)0.039 (2)
H2A0.72890.22010.38880.047*
C30.6573 (9)0.0639 (7)0.4251 (6)0.066 (3)
H3A0.59650.04360.45430.099*
H3B0.72410.03360.45690.099*
H3C0.64670.02830.36920.099*
C40.7857 (7)0.4469 (8)0.4740 (6)0.049 (2)
H4A0.77960.53440.47290.059*
H4B0.79690.42060.41740.059*
C50.8847 (6)0.4120 (7)0.5363 (5)0.041 (2)
C60.9618 (7)0.3294 (8)0.5136 (6)0.049 (2)
H60.95490.29690.45890.059*
C71.0472 (7)0.2982 (9)0.5739 (6)0.052 (2)
C81.0592 (7)0.3451 (9)0.6557 (6)0.053 (2)
C90.9841 (7)0.4247 (9)0.6800 (6)0.060 (3)
H90.99120.45510.73530.072*
C100.8966 (7)0.4585 (8)0.6185 (6)0.054 (3)
H100.84510.51340.63300.065*
C111.1997 (8)0.2212 (11)0.6477 (7)0.075 (3)
H11A1.27320.24910.64240.090*
H11B1.20480.13970.67050.090*
C120.5659 (7)0.2435 (7)0.2716 (5)0.042 (2)
H12A0.58530.16080.25980.050*
H12B0.49200.25810.24300.050*
C130.6429 (7)0.3269 (7)0.2362 (5)0.0350 (19)
C140.6058 (7)0.4436 (7)0.2080 (5)0.041 (2)
H140.53590.47040.21490.049*
C150.6743 (8)0.5138 (7)0.1712 (5)0.043 (2)
C160.7790 (7)0.4808 (7)0.1605 (5)0.041 (2)
C170.8188 (8)0.3702 (8)0.1886 (5)0.050 (2)
H170.89000.34630.18310.060*
C180.7476 (7)0.2941 (7)0.2262 (5)0.043 (2)
H180.77280.21810.24510.051*
C190.7520 (8)0.6666 (8)0.1051 (6)0.056 (2)
H19A0.78100.73880.13510.068*
H19B0.73710.68500.04470.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0484 (7)0.0262 (5)0.0315 (6)0.0033 (5)0.0014 (4)0.0017 (4)
Cl10.0587 (14)0.0258 (10)0.0474 (12)0.0026 (10)0.0033 (10)0.0019 (9)
Cl20.0439 (12)0.0357 (11)0.0339 (11)0.0037 (9)0.0006 (9)0.0004 (9)
O10.068 (5)0.100 (6)0.069 (5)0.028 (4)0.003 (4)0.019 (4)
O20.063 (5)0.102 (6)0.068 (5)0.026 (4)0.020 (4)0.024 (4)
O30.072 (5)0.044 (4)0.089 (5)0.010 (4)0.026 (4)0.028 (4)
O40.064 (4)0.051 (4)0.064 (4)0.004 (4)0.022 (3)0.006 (3)
N10.053 (4)0.034 (4)0.027 (3)0.015 (3)0.003 (3)0.001 (3)
N20.049 (4)0.028 (3)0.025 (3)0.003 (3)0.004 (3)0.001 (3)
C10.061 (6)0.034 (4)0.029 (4)0.004 (4)0.000 (4)0.011 (4)
C20.049 (5)0.031 (4)0.034 (5)0.008 (4)0.004 (4)0.004 (4)
C30.096 (8)0.029 (5)0.067 (7)0.004 (5)0.011 (6)0.002 (4)
C40.050 (6)0.046 (5)0.055 (6)0.006 (5)0.016 (5)0.005 (4)
C50.037 (5)0.033 (5)0.051 (5)0.003 (4)0.000 (4)0.004 (4)
C60.047 (5)0.059 (6)0.041 (5)0.008 (5)0.008 (4)0.004 (5)
C70.039 (5)0.054 (6)0.062 (6)0.001 (5)0.010 (5)0.009 (5)
C80.037 (5)0.059 (6)0.062 (6)0.003 (5)0.000 (5)0.010 (5)
C90.051 (6)0.066 (7)0.059 (6)0.004 (5)0.004 (5)0.027 (5)
C100.041 (5)0.045 (5)0.075 (7)0.005 (4)0.002 (5)0.019 (5)
C110.055 (7)0.084 (8)0.083 (8)0.022 (6)0.004 (6)0.010 (7)
C120.063 (6)0.036 (5)0.023 (4)0.009 (4)0.005 (4)0.006 (4)
C130.044 (5)0.037 (4)0.022 (4)0.005 (4)0.000 (4)0.003 (3)
C140.043 (5)0.040 (5)0.041 (5)0.008 (4)0.012 (4)0.004 (4)
C150.058 (6)0.034 (4)0.040 (5)0.008 (4)0.014 (4)0.006 (4)
C160.047 (5)0.039 (5)0.037 (5)0.001 (4)0.006 (4)0.002 (4)
C170.053 (6)0.054 (6)0.044 (5)0.007 (5)0.011 (5)0.011 (5)
C180.053 (6)0.036 (5)0.036 (5)0.006 (4)0.001 (4)0.000 (4)
C190.067 (7)0.045 (5)0.060 (6)0.004 (5)0.015 (5)0.006 (5)
Geometric parameters (Å, º) top
Cu1—N12.032 (6)C4—C51.504 (11)
Cu1—N22.044 (6)C4—H4A0.9700
Cu1—Cl22.278 (2)C4—H4B0.9700
Cu1—Cl12.282 (2)C5—C101.387 (12)
Cu1—Cl1i2.971 (2)C5—C61.399 (11)
Cu1—Cu1i3.565 (2)C6—C71.360 (12)
Cl1—Cu1i2.971 (2)C6—H60.9300
O1—C71.371 (10)C7—C81.382 (12)
O1—C111.420 (12)C8—C91.369 (12)
O2—C81.360 (10)C9—C101.395 (12)
O2—C111.422 (12)C9—H90.9300
O3—C151.404 (10)C10—H100.9300
O3—C191.422 (10)C11—H11A0.9700
O4—C161.381 (10)C11—H11B0.9700
O4—C191.423 (10)C12—C131.486 (11)
N1—C41.456 (10)C12—H12A0.9700
N1—C11.517 (10)C12—H12B0.9700
N1—H10.9100C13—C181.369 (11)
N2—C21.477 (9)C13—C141.419 (10)
N2—C121.519 (9)C14—C151.338 (11)
N2—H20.9100C14—H140.9300
C1—C21.521 (10)C15—C161.373 (11)
C1—H1A0.9700C16—C171.368 (11)
C1—H1B0.9700C17—C181.405 (12)
C2—C31.531 (11)C17—H170.9300
C2—H2A0.9800C18—H180.9300
C3—H3A0.9600C19—H19A0.9700
C3—H3B0.9600C19—H19B0.9700
C3—H3C0.9600
N1—Cu1—N284.5 (2)H4A—C4—H4B107.6
N1—Cu1—Cl2170.0 (2)C10—C5—C6119.8 (8)
N2—Cu1—Cl292.1 (2)C10—C5—C4119.2 (8)
N1—Cu1—Cl190.4 (2)C6—C5—C4121.0 (8)
N2—Cu1—Cl1164.3 (2)C7—C6—C5118.0 (8)
Cl2—Cu1—Cl195.26 (8)C7—C6—H6121.0
N1—Cu1—Cl1i81.5 (2)C5—C6—H6121.0
N2—Cu1—Cl1i98.3 (2)C6—C7—O1128.7 (9)
Cl2—Cu1—Cl1i89.70 (7)C6—C7—C8122.1 (9)
Cl1—Cu1—Cl1i95.61 (7)O1—C7—C8109.2 (8)
N1—Cu1—Cu1i83.2 (2)O2—C8—C9128.6 (9)
N2—Cu1—Cu1i137.40 (18)O2—C8—C7110.2 (8)
Cl2—Cu1—Cu1i93.11 (6)C9—C8—C7121.2 (9)
Cl1—Cu1—Cu1i56.04 (6)C8—C9—C10117.4 (9)
Cl1i—Cu1—Cu1i39.57 (4)C8—C9—H9121.3
Cu1—Cl1—Cu1i84.39 (7)C10—C9—H9121.3
C7—O1—C11106.2 (7)C5—C10—C9121.6 (8)
C8—O2—C11106.0 (7)C5—C10—H10119.2
C15—O3—C19106.8 (7)C9—C10—H10119.2
C16—O4—C19106.0 (6)O1—C11—O2108.3 (8)
C4—N1—C1115.0 (6)O1—C11—H11A110.0
C4—N1—Cu1117.2 (5)O2—C11—H11A110.0
C1—N1—Cu1104.4 (5)O1—C11—H11B110.0
C4—N1—H1106.5O2—C11—H11B110.0
C1—N1—H1106.5H11A—C11—H11B108.4
Cu1—N1—H1106.5C13—C12—N2112.7 (6)
C2—N2—C12112.4 (6)C13—C12—H12A109.1
C2—N2—Cu1111.0 (4)N2—C12—H12A109.1
C12—N2—Cu1116.5 (4)C13—C12—H12B109.1
C2—N2—H2105.3N2—C12—H12B109.1
C12—N2—H2105.3H12A—C12—H12B107.8
Cu1—N2—H2105.3C18—C13—C14118.1 (8)
N1—C1—C2108.3 (6)C18—C13—C12122.6 (7)
N1—C1—H1A110.0C14—C13—C12119.3 (7)
C2—C1—H1A110.0C15—C14—C13118.1 (8)
N1—C1—H1B110.0C15—C14—H14121.0
C2—C1—H1B110.0C13—C14—H14121.0
H1A—C1—H1B108.4C14—C15—C16124.0 (8)
N2—C2—C1108.0 (6)C14—C15—O3128.0 (8)
N2—C2—C3114.6 (7)C16—C15—O3108.0 (8)
C1—C2—C3110.4 (7)C17—C16—C15119.8 (8)
N2—C2—H2A107.9C17—C16—O4129.2 (8)
C1—C2—H2A107.9C15—C16—O4111.1 (7)
C3—C2—H2A107.9C16—C17—C18117.2 (8)
C2—C3—H3A109.5C16—C17—H17121.4
C2—C3—H3B109.5C18—C17—H17121.4
H3A—C3—H3B109.5C13—C18—C17122.9 (8)
C2—C3—H3C109.5C13—C18—H18118.5
H3A—C3—H3C109.5C17—C18—H18118.5
H3B—C3—H3C109.5O3—C19—O4108.1 (7)
N1—C4—C5114.1 (7)O3—C19—H19A110.1
N1—C4—H4A108.7O4—C19—H19A110.1
C5—C4—H4A108.7O3—C19—H19B110.1
N1—C4—H4B108.7O4—C19—H19B110.1
C5—C4—H4B108.7H19A—C19—H19B108.4
N1—Cu1—Cl1—Cu1i81.51 (19)C5—C6—C7—C80.2 (14)
N2—Cu1—Cl1—Cu1i152.2 (6)C11—O1—C7—C6179.7 (10)
Cl2—Cu1—Cl1—Cu1i90.21 (7)C11—O1—C7—C81.0 (11)
Cl1i—Cu1—Cl1—Cu1i0.0C11—O2—C8—C9179.8 (11)
N2—Cu1—N1—C4101.1 (6)C11—O2—C8—C71.3 (11)
Cl2—Cu1—N1—C4171.3 (8)C6—C7—C8—O2179.8 (9)
Cl1—Cu1—N1—C464.0 (6)O1—C7—C8—O21.4 (11)
Cl1i—Cu1—N1—C4159.6 (6)C6—C7—C8—C90.8 (15)
Cu1i—Cu1—N1—C4119.7 (6)O1—C7—C8—C9179.6 (9)
N2—Cu1—N1—C127.4 (5)O2—C8—C9—C10179.9 (9)
Cl2—Cu1—N1—C142.8 (13)C7—C8—C9—C101.3 (15)
Cl1—Cu1—N1—C1167.5 (5)C6—C5—C10—C90.1 (14)
Cl1i—Cu1—N1—C171.9 (5)C4—C5—C10—C9177.0 (8)
Cu1i—Cu1—N1—C1111.8 (5)C8—C9—C10—C51.0 (14)
N1—Cu1—N2—C20.8 (5)C7—O1—C11—O20.2 (11)
Cl2—Cu1—N2—C2169.7 (5)C8—O2—C11—O10.7 (12)
Cl1—Cu1—N2—C272.3 (8)C2—N2—C12—C1377.2 (8)
Cl1i—Cu1—N2—C279.7 (5)Cu1—N2—C12—C1352.6 (8)
Cu1i—Cu1—N2—C272.8 (6)N2—C12—C13—C1894.1 (9)
N1—Cu1—N2—C12129.5 (6)N2—C12—C13—C1488.7 (8)
Cl2—Cu1—N2—C1259.9 (5)C18—C13—C14—C151.7 (11)
Cl1—Cu1—N2—C1258.1 (9)C12—C13—C14—C15175.6 (7)
Cl1i—Cu1—N2—C12149.9 (5)C13—C14—C15—C161.2 (13)
Cu1i—Cu1—N2—C12156.8 (4)C13—C14—C15—O3177.1 (8)
C4—N1—C1—C280.3 (8)C19—O3—C15—C14179.6 (9)
Cu1—N1—C1—C249.5 (7)C19—O3—C15—C161.8 (9)
C12—N2—C2—C1158.9 (6)C14—C15—C16—C170.2 (13)
Cu1—N2—C2—C126.3 (7)O3—C15—C16—C17178.9 (7)
C12—N2—C2—C377.7 (9)C14—C15—C16—O4179.2 (8)
Cu1—N2—C2—C3149.8 (6)O3—C15—C16—O40.5 (10)
N1—C1—C2—N250.7 (9)C19—O4—C16—C17179.7 (9)
N1—C1—C2—C3176.6 (7)C19—O4—C16—C151.0 (9)
C1—N1—C4—C553.5 (9)C15—C16—C17—C181.2 (12)
Cu1—N1—C4—C5176.7 (5)O4—C16—C17—C18178.1 (8)
N1—C4—C5—C1069.7 (10)C14—C13—C18—C170.7 (12)
N1—C4—C5—C6107.3 (9)C12—C13—C18—C17176.5 (7)
C10—C5—C6—C70.5 (13)C16—C17—C18—C130.7 (12)
C4—C5—C6—C7177.5 (8)C15—O3—C19—O42.4 (10)
C5—C6—C7—O1178.4 (9)C16—O4—C19—O32.1 (9)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.912.583.476 (6)169
N2—H2···O3ii0.912.203.075 (9)160
C12—H12A···Cl2ii0.972.843.774 (8)162
C11—H11A···Cl1iii0.972.873.779 (11)156
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+2, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu2Cl4(C17H20Cl2N2)2][Cu2Cl4(C19H22N2O4)2]
Mr915.38953.65
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)298298
a, b, c (Å)14.4217 (15), 9.5445 (13), 15.6198 (19)12.2965 (13), 11.0554 (12), 15.822 (2)
α, β, γ (°)90, 115.647 (2), 9090, 98.140 (2), 90
V3)1938.2 (4)2129.2 (4)
Z22
Radiation typeMo KαMo Kα
µ (mm1)1.681.30
Crystal size (mm)0.54 × 0.50 × 0.460.45 × 0.37 × 0.31
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.464, 0.5120.592, 0.688
No. of measured, independent and
observed [I > 2σ(I)] reflections
8896, 3417, 2484 10028, 3730, 2008
Rint0.0380.162
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.06 0.063, 0.217, 1.14
No. of reflections34173730
No. of parameters218254
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.281.12, 0.64

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected geometric parameters (Å, º) for (I) top
Cu1—N12.026 (2)Cu1—Cl22.2742 (9)
Cu1—N22.033 (2)Cu1—Cl1i2.852 (1)
Cu1—Cl12.2604 (9)Cu1—Cu1i3.4285 (8)
N1—Cu1—N283.69 (9)Cl1—Cu1—Cl296.18 (3)
N1—Cu1—Cl192.41 (7)N1—Cu1—Cl1i82.32 (7)
N2—Cu1—Cl1159.84 (8)N2—Cu1—Cl1i102.40 (7)
N1—Cu1—Cl2169.01 (7)Cl1—Cu1—Cl1i96.64 (3)
N2—Cu1—Cl290.49 (7)Cl2—Cu1—Cl1i89.87 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.912.573.450 (3)164.4
C11—H11B···Cl2ii0.972.823.659 (3)145.2
C13—H13···Cl3iii0.932.893.810 (3)169.5
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y1/2, z+3/2.
Selected geometric parameters (Å, º) for (II) top
Cu1—N12.032 (6)Cu1—Cl12.282 (2)
Cu1—N22.044 (6)Cu1—Cl1i2.971 (2)
Cu1—Cl22.278 (2)Cu1—Cu1i3.565 (2)
N1—Cu1—N284.5 (2)N1—Cu1—Cl1i81.5 (2)
N1—Cu1—Cl2170.0 (2)N2—Cu1—Cl1i98.3 (2)
N2—Cu1—Cl292.1 (2)Cl2—Cu1—Cl1i89.70 (7)
N1—Cu1—Cl190.4 (2)Cl1—Cu1—Cl1i95.61 (7)
N2—Cu1—Cl1164.3 (2)Cu1—Cl1—Cu1i84.39 (7)
Cl2—Cu1—Cl195.26 (8)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.912.583.476 (6)169.1
N2—H2···O3ii0.912.203.075 (9)159.9
C12—H12A···Cl2ii0.972.843.774 (8)161.6
C11—H11A···Cl1iii0.972.873.779 (11)155.6
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+2, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds