Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The two title mononuclear compounds are four-coordinate bis­[N-(5-oxo-4,4-diphenyl-4,5-dihydro-1H-imidazolidin-2-ylidene)glycinato]copper(II) dimethyl­formamide disolvate, [Cu(C17H14N3O3)2]·2C3H7NO, (I), and five-coordinate aqua­bis[N-(5-oxo-4,4-diphenyl-4,5-dihydro-1H-imidazolidin-2-ylidene)glycinato]copper(II) dimethyl­formamide disolvate, [Cu(C17H14N3O3)2(H2O)]·2C3H7NO, (II). In (I), the CuII ion lies on an inversion centre with one-half of the complex mol­ecule in the asymmetric unit, while in (II) there are two independent ligand mol­ecules in the asymmetric unit, with the CuII ion and coordinated water mol­ecule located on a general position. In both crystal structures, the complex mol­ecules assemble in ribbons via N—H...O hydrogen-bond networks.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107055965/hj3059sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107055965/hj3059Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107055965/hj3059IIsup3.hkl
Contains datablock II

CCDC references: 681522; 681523

Comment top

In our previous research, diphenyl- and arylidene-imidazoline-4-one amino acids have been studied from the viewpoint of their binding to ionotropic (iGluRs) (Kieć-Kononowicz et al., 1998) and/or metabotropic (iGluRs) receptors (Karolak-Wojciechowska & Kieć-Kononowicz, in preparation). From information based on the model of ligand-receptor interactions with iGluRs (Karolak-Wojciechowska et al., 2000), it was postulated that the presence of COO- ions in the amino acids studied was indispensable for binding (Karolak-Wojciechowska et al., 2001). For this reason, we are currently focusing our attention on interactions between such amino acids and metals. As a first example, we obtained an interesting six-coordinate potassium polymeric complex with o-Cl-benzylidene-imidazoline-4-one β-alanine and water molecules (Mrozek et al., 2003). Recently, we obtained the two title CuII complexes, (I) and (II), with 5,5-diphenyl-4-oxo-imidazolidinyl glycine, and present their crystal structures here.

The molecular structures of (I) and (II) are shown in Figs. 1 and 2, respectively. In (I), the four-coordinate CuII ion lies on a crystallographic inversion centre and forms a square-planar CuN2O2 unit (Table 1). The O,N-bidentate unit, belonging to the 5,5-diphenyl-4-oxo-imidazolidinyl-glycine (hereinafter abbreviated as DPGly) ligand, forms a planar five-membered ring. Even though the coordination numbers in structures (I) and (II) are not the same, in both compounds the CuII atom is coordinated by two O,N-bidentate units, with atoms O9 and N6 [and O49 and N46 in (II)] in a trans geometry. An increase in the coordination number of CuII from four in (I) to five in (II) is caused by the presence of a water molecule. This results not only in bond-length elongation in the coordination environment (Tables 1 and 3), but also in a shift of the Cu atom from the basal plane towards the apical atom O1 (water molecule) in (II) [0.052 (5) Å for (I) and 0.1646 (11) Å for (II)]. Furthermore, the structure of (II) loses the centre of symmetry, with the space group changng from P21/n in (I) to P21 in (II). The distortion from ideal five-coordinate geometries can be best described by the degree of trigonality τ (Addison et al., 1984). For a regular square-pyramidal (SQP) geometry, the trigonality parameter is 0, and for a trigonal–bipyramidal (TBP) structure it increases to 1. In (II), τ = 0.114, indicating a slightly distorted SQP coordination geometry around CuII.

The bond valences around CuII atoms in both structures were computed according to Brown (1994) and O'Keeffe & Brese (1991) as νij = exp[(Rij- dij)/0.37], where Rij is the bond-valence parameter (in the formal sense, it is the single-bond length between the i and j atoms) and dij is the observed bond length. In the present structures, the application of this correlation allows one to compare the relative importance of Cu—L bonds of Cu polyhedra, and to check the valence-sum rule for the CuII atom (Brown, 2002). According to Shields et al. (2000), RCu—N and RCu—O were taken as 1.716 and 1.657 Å for (I), respectively, and 1.705 and 1.652 Å for (II), respectively. The estimated bond valences of the CuII atom show that, in both structures, the equatorial Cu—N bonds are distinctly stronger than the equatorial Cu—O ones [νCu—N = 0.530 and νCu—O = 0.489 v.u. in (I), and νCu—N(average) = 0.485 and νCu–O(average) = 0.439 v.u. in (II)]. The valence of the axial Cu–O1 bond in structure (II) amounts to 0.155 v.u. Finally, the valences of the four- and five-coordinate Cu atoms are consistent with the valence-sum rule (Vi = Σνij), which gives here VCu = 2.037 for (I) and 2.003 for (II).

The dihedral angles between the planes of the five-membered imidazole ring and the respective phenyl rings located on atoms C5 and C45 in (II) are not equal [76.76 (13)° for the C11–C16 ring, 57.34 (10)° for C21–C26, 67.04 (9)° for C51–C56 and 64.72 (11)° for C61–C66], while in (I) they are equal to within experimental error [68.78 (14) and 69.26 (14)° for the corresponding C11–C16 and C21–C26 rings, respectively].

In the structure of (I), intramolecular N3—H3···O9(-x, -y, -z) hydrogen bonds join two DPGly ligand molecules. This bond generates an S(6) graph-set motif (Etter et al., 1990) in the plane of the O,N-bidentate units. The complex molecules are connected together by N1—H1···O10(1 - x, -y, -z) hydrogen bonds, forming rings of graph-set R22(14). These rings construct ribbons running along the a axis which are slightly inclined with respect to the ac plane (Fig. 3 and Table 2). The distance between two parallel ribbons is equal to the b axis value [14.075 (6) Å], but at 0.5b another ribbon, oppositely inclined to the ac plane, is present. Between these two ribbons there is enough space for the location of all the phenyl rings from the DPGly molecules and the respective number of dimethylformamide (DMF) solvent molecules. The DMF molecules bridge successive ribbons through non-covalent interactions in the crystal of (I). Therefore, from one site, DMF atom O31 is involved in a weak C71—H71···O31(-x + 1/2, y - 1/2, -z + 1/2) interaction with the glycine atom C7 of one ribbon, while the other imidazolidinone carbonyl O atom from the second ribbon participates in a weak C34–H342···O4(-x, -y, 1 - z) interaction with a DMF C atom [3.514 (8) Å].

Analogous intra- and intermolecular N—H···O hydrogen bonds are also recognized in the structure of (II) (Fig. 4 and Table 4), with the final ribbons running along the c axis and with the distance between parallel ribbons amounting to the a axis value [8.7305 (3) Å]. The space between them contains not only the phenyl rings from the DPGly molecules and the respective number of DMF solvent molecules, but also a ligand water molecule. The solvent DMF molecules in (II) are differently anchored than in (I). Both DMF molecules are hydrogen-bonded to the coordinated water via relevant O1—H1W···O31 and O1—H2W···O41(x, y, z + 1) interactions. Additionally, weak hydrogen-bond C7—H7B···O71(x - 1, y, z) interactions involving one DMF molecule maintain the parallel ribbons. It is worth mentioning that one of the two imidazolidinone carbonyl O atoms in (II) (O44) is involved in an intermolecular interaction, creating a relatively strong C24—H24···O44(-x, 1/2 + y, 1 - z) hydrogen bond to a neighbouring ribbon at an angle of 170°. Due to this extended interaction, parallel ribbons form a helix down the b axis.

Related literature top

For related literature, see: Addison et al. (1984); Brown (1994, 2002); Bruker (2003); Dziemidowicz-Borys (2006); Etter et al. (1990); Karolak-Wojciechowska, Kieć-Kononowicz & Mrozek (2001); Karolak-Wojciechowska, Mrozek & Kieć-Kononowicz (2000); Kieć-Kononowicz, Karolak-Wojciechowska & Handzlik (1998); Kieć-Kononowicz, Karolak-Wojciechowska, Mrozek & Poseł (1995); Mrozek et al. (2003); O'Keeffe & Brese (1991); Shields et al. (2000).

Experimental top

To obtain crystals of these complexes, the method described by Dziemidowicz-Borys (2006) was adapted for our compounds. Locally synthesized N-[(5,5-diphenyl)-4-oxo-imidazolidinyl]glycine (Kieć-Kononowicz et al., 1995) was used as the ligand for complex formation. A solution of CuCl2·2H2O (9 mg, 0.052 mmol) in DMF (2 ml) was added to N-[(5,5-diphenyl)-4-oxo-imidazolidinyl]glycine (16 mg, 0.052 mmol) dissolved in warmed DMF (2 ml). The resulting green–blue solution was left at room temperature for a couple of days with limited air contact. After two weeks, violet crystals [Of (I)?] appeared, which were carefully filtered out. From the filtrate left in contact with air, a few blue crystals [Of (II)?] were obtained after a further two weeks. [Was the air thus the source of the coordinated water in (II)?]

Refinement top

In (I), the H atoms attached to atoms N1 and N3 were located in a difference Fourier map and their positions and displacement parameters were refined freely. In (II), H atoms attached to N atoms were placed in idealized positions and constrained to ride on their parent atoms, with N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(N). For both compounds, phenylene and methylene H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 and 0.97 Å and Uiso(H) = 1.2Ueq(C). The methyl H atoms in the DMF molecules were found in a difference Fourier map and were included using an AFIX 137 command (SHELXTL; Bruker, 2003), with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). One of the DMF molecules in (II) showed disorder; the occupancies of the disordered positions were initially refined, and later fixed at 0.65 and 0.35.

Computing details top

Data collection: SMART (Bruker, 2002) for (I); CrysAlis CCD (Oxford Diffraction, 2006) for (II). Cell refinement: SAINT-Plus (Bruker, 2003) for (I); CrysAlis RED (Oxford Diffraction, 2006) for (II). Data reduction: SAINT-Plus (Bruker, 2003) for (I); CrysAlis RED (Oxford Diffraction, 2006) for (II). For both compounds, program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL (Bruker, 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are depicted as spheres of arbitrary radii. Unlabelled atoms are related to the corresponding labelled atoms by the symmetry code (-x, -y, -z).
[Figure 2] Fig. 2. View of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are depicted as spheres of arbitrary radii. For clarity, only the major component of the disordered atoms is shown.
[Figure 3] Fig. 3. Hydrogen-bonded polymeric ribbons in (I), running along the [100] direction and viewed down the [010] direction. Hydrogen bonds are drawn as dashed lines. DMF molecules have been omitted for clarity.
[Figure 4] Fig. 4. Hydrogen-bonded polymeric ribbons in (II), running along the [001] direction. Hydrogen bonds are drawn as dashed lines. DMF molecules have been omitted for clarity.
(I) bis[N-(4,4-diphenyl-5-oxo-4,5-dihydro-1H-imidazol-2- yl)glycinato]copper(II) dimethylformamide disolvate top
Crystal data top
[Cu(C17H14N3O3)2]·2C3H7NOF(000) = 862
Mr = 826.37Dx = 1.346 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1580 reflections
a = 8.987 (4) Åθ = 2.5–21.5°
b = 14.075 (6) ŵ = 0.60 mm1
c = 16.208 (7) ÅT = 291 K
β = 95.913 (6)°Prism, violet
V = 2039.3 (15) Å30.2 × 0.1 × 0.05 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
3590 independent reflections
Radiation source: fine focus sealed Siemens Mo tube2815 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.924, Tmax = 0.979k = 1616
28748 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0553P)2 + 1.7037P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
3590 reflectionsΔρmax = 0.67 e Å3
269 parametersΔρmin = 0.27 e Å3
0 restraints
Crystal data top
[Cu(C17H14N3O3)2]·2C3H7NOV = 2039.3 (15) Å3
Mr = 826.37Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.987 (4) ŵ = 0.60 mm1
b = 14.075 (6) ÅT = 291 K
c = 16.208 (7) Å0.2 × 0.1 × 0.05 mm
β = 95.913 (6)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3590 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2815 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.979Rint = 0.052
28748 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.67 e Å3
3590 reflectionsΔρmin = 0.27 e Å3
269 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.000000.000000.000000.0299 (2)
O40.1398 (3)0.0524 (2)0.33959 (14)0.0562 (9)
O90.1134 (2)0.02151 (17)0.09254 (13)0.0419 (8)
O100.3414 (3)0.0211 (2)0.13303 (14)0.0528 (9)
N10.3722 (3)0.0238 (2)0.18148 (16)0.0352 (9)
N30.1325 (3)0.0316 (2)0.19893 (16)0.0360 (9)
N60.1959 (3)0.01488 (18)0.06272 (15)0.0332 (8)
C20.2349 (3)0.0228 (2)0.14118 (18)0.0287 (9)
C40.2010 (4)0.0403 (2)0.2778 (2)0.0380 (10)
C50.3714 (3)0.0298 (2)0.27167 (18)0.0335 (10)
C70.3184 (3)0.0053 (2)0.00944 (18)0.0353 (10)
C80.2571 (3)0.0141 (2)0.07912 (19)0.0343 (10)
C110.4220 (4)0.0635 (2)0.3153 (2)0.0381 (11)
C120.4645 (5)0.1423 (3)0.2728 (2)0.0551 (14)
C130.5081 (6)0.2244 (3)0.3161 (3)0.0751 (18)
C140.5078 (6)0.2292 (3)0.4003 (3)0.081 (2)
C150.4644 (6)0.1517 (3)0.4425 (3)0.0722 (18)
C160.4225 (5)0.0689 (3)0.4012 (2)0.0528 (14)
C210.4634 (4)0.1150 (2)0.30572 (19)0.0367 (10)
C220.6178 (4)0.1068 (3)0.3171 (2)0.0485 (12)
C230.7063 (5)0.1836 (3)0.3428 (3)0.0671 (17)
C240.6425 (7)0.2681 (4)0.3579 (3)0.0803 (19)
C250.4910 (7)0.2778 (3)0.3476 (3)0.079 (2)
C260.3995 (5)0.2015 (3)0.3208 (2)0.0548 (14)
O310.0365 (6)0.2951 (3)0.4520 (3)0.1166 (19)
N320.0603 (5)0.1811 (3)0.5500 (2)0.0734 (17)
C310.0867 (7)0.2210 (4)0.4799 (4)0.090 (3)
C330.0323 (12)0.2286 (6)0.6028 (5)0.180 (5)
C340.1268 (8)0.0929 (5)0.5783 (5)0.135 (3)
H10.442 (4)0.019 (2)0.157 (2)0.038 (10)*
H30.042 (4)0.033 (2)0.182 (2)0.031 (9)*
H710.383700.046400.029600.0420*
H720.377000.063300.011900.0420*
H120.463900.140300.215500.0660*
H130.538100.277100.287400.0900*
H140.536800.284700.428600.0970*
H150.463100.154800.499800.0870*
H160.394400.016300.430700.0640*
H220.662300.048800.307400.0580*
H230.809800.177200.349800.0810*
H240.702400.319700.375300.0970*
H250.448100.336000.358600.0950*
H260.296100.208800.313200.0660*
H310.151100.188700.448400.1070*
H3310.018000.296000.598800.2710*
H3320.006400.208600.659000.2710*
H3330.135200.213400.586200.2710*
H3410.200500.074400.542500.2020*
H3420.050900.044800.577400.2020*
H3430.173700.100300.633800.2020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0176 (3)0.0453 (3)0.0269 (3)0.0004 (2)0.0022 (2)0.0033 (2)
O40.0419 (15)0.097 (2)0.0316 (13)0.0012 (14)0.0135 (11)0.0108 (13)
O90.0184 (11)0.0754 (17)0.0321 (11)0.0024 (10)0.0031 (9)0.0093 (11)
O100.0246 (12)0.102 (2)0.0327 (12)0.0028 (12)0.0070 (10)0.0106 (12)
N10.0223 (14)0.0595 (19)0.0238 (13)0.0013 (12)0.0023 (11)0.0031 (11)
N30.0204 (14)0.0571 (18)0.0309 (14)0.0004 (12)0.0043 (11)0.0054 (12)
N60.0200 (12)0.0514 (17)0.0280 (13)0.0002 (11)0.0018 (10)0.0026 (11)
C20.0226 (15)0.0368 (18)0.0267 (15)0.0006 (12)0.0032 (12)0.0026 (12)
C40.0327 (18)0.0499 (19)0.0319 (17)0.0004 (15)0.0059 (14)0.0007 (14)
C50.0296 (17)0.0469 (19)0.0242 (15)0.0027 (13)0.0034 (12)0.0040 (13)
C70.0270 (16)0.0505 (19)0.0277 (15)0.0000 (15)0.0005 (12)0.0023 (15)
C80.0247 (16)0.049 (2)0.0296 (15)0.0016 (14)0.0042 (12)0.0018 (14)
C110.0321 (18)0.047 (2)0.0342 (17)0.0075 (15)0.0010 (14)0.0013 (14)
C120.067 (3)0.051 (2)0.047 (2)0.0025 (19)0.0052 (19)0.0105 (18)
C130.103 (4)0.044 (2)0.080 (3)0.008 (2)0.018 (3)0.005 (2)
C140.109 (4)0.052 (3)0.082 (4)0.001 (3)0.004 (3)0.019 (2)
C150.099 (4)0.071 (3)0.046 (2)0.001 (3)0.004 (2)0.017 (2)
C160.067 (3)0.056 (2)0.0346 (19)0.0009 (19)0.0011 (18)0.0001 (16)
C210.041 (2)0.0450 (19)0.0239 (15)0.0073 (15)0.0020 (14)0.0017 (13)
C220.038 (2)0.061 (2)0.046 (2)0.0099 (17)0.0014 (16)0.0052 (17)
C230.060 (3)0.082 (3)0.058 (3)0.032 (2)0.000 (2)0.006 (2)
C240.101 (4)0.066 (3)0.071 (3)0.039 (3)0.005 (3)0.002 (2)
C250.119 (5)0.042 (2)0.073 (3)0.003 (3)0.003 (3)0.005 (2)
C260.061 (3)0.049 (2)0.052 (2)0.0059 (19)0.0059 (19)0.0006 (17)
O310.165 (4)0.083 (3)0.097 (3)0.011 (3)0.009 (3)0.011 (2)
N320.077 (3)0.073 (3)0.072 (3)0.002 (2)0.016 (2)0.001 (2)
C310.116 (5)0.075 (4)0.079 (4)0.007 (3)0.017 (3)0.013 (3)
C330.270 (12)0.139 (7)0.154 (7)0.056 (7)0.128 (8)0.011 (6)
C340.115 (6)0.113 (5)0.180 (7)0.017 (4)0.030 (5)0.058 (5)
Geometric parameters (Å, º) top
Cu1—O91.922 (2)C15—C161.377 (6)
Cu1—N61.951 (3)C21—C261.379 (5)
O4—C41.203 (4)C21—C221.386 (5)
O9—C81.292 (3)C22—C231.381 (6)
O10—C81.218 (4)C23—C241.354 (7)
O31—C311.206 (7)C24—C251.361 (9)
N1—C21.335 (4)C25—C261.395 (7)
N1—C51.465 (4)C7—H720.97
N3—C41.366 (4)C7—H710.97
N3—C21.384 (4)C12—H120.93
N6—C21.289 (4)C13—H130.93
N6—C71.474 (4)C14—H140.93
N1—H10.78 (4)C15—H150.93
N3—H30.83 (4)C16—H160.93
N32—C341.433 (8)C22—H220.93
N32—C311.311 (7)C23—H230.93
N32—C331.421 (10)C24—H240.93
C4—C51.552 (5)C25—H250.93
C5—C111.538 (4)C26—H260.93
C5—C211.527 (4)C31—H310.93
C7—C81.509 (4)C33—H3310.96
C11—C121.380 (5)C33—H3320.96
C11—C161.394 (5)C33—H3330.96
C12—C131.387 (6)C34—H3410.96
C13—C141.367 (7)C34—H3420.96
C14—C151.366 (6)C34—H3430.96
O9—Cu1—N684.32 (9)C23—C24—C25120.2 (5)
O9—Cu1—N6i95.68 (9)C24—C25—C26120.7 (5)
Cu1—O9—C8117.21 (19)C21—C26—C25119.5 (4)
C2—N1—C5112.9 (2)N6—C7—H71109
C2—N3—C4112.0 (3)N6—C7—H72110
Cu1—N6—C2131.5 (2)C8—C7—H71109
Cu1—N6—C7111.92 (18)C8—C7—H72110
C2—N6—C7116.3 (3)H71—C7—H72108
C2—N1—H1120 (2)C13—C12—H12120
C5—N1—H1127 (2)C11—C12—H12120
C2—N3—H3118 (2)C12—C13—H13120
C4—N3—H3130 (2)C14—C13—H13119
C33—N32—C34117.8 (5)C13—C14—H14120
C31—N32—C33119.3 (5)C15—C14—H14120
C31—N32—C34122.8 (5)C16—C15—H15120
N1—C2—N6128.9 (3)C14—C15—H15120
N1—C2—N3108.3 (3)C15—C16—H16120
N3—C2—N6122.9 (3)C11—C16—H16120
O4—C4—C5127.3 (3)C21—C22—H22120
O4—C4—N3126.2 (3)C23—C22—H22120
N3—C4—C5106.5 (3)C22—C23—H23120
N1—C5—C11112.2 (2)C24—C23—H23120
C4—C5—C21113.8 (2)C25—C24—H24120
N1—C5—C21110.4 (2)C23—C24—H24120
N1—C5—C4100.1 (2)C24—C25—H25120
C11—C5—C21112.4 (2)C26—C25—H25120
C4—C5—C11107.4 (2)C21—C26—H26120
N6—C7—C8110.6 (2)C25—C26—H26120
O9—C8—C7115.8 (2)O31—C31—N32127.0 (6)
O9—C8—O10123.9 (3)O31—C31—H31117
O10—C8—C7120.3 (3)N32—C31—H31116
C5—C11—C12122.7 (3)N32—C33—H331109
C5—C11—C16118.4 (3)N32—C33—H332110
C12—C11—C16118.8 (3)N32—C33—H333109
C11—C12—C13119.7 (3)H331—C33—H332109
C12—C13—C14121.1 (4)H331—C33—H333109
C13—C14—C15119.4 (4)H332—C33—H333109
C14—C15—C16120.7 (4)N32—C34—H341109
C11—C16—C15120.3 (4)N32—C34—H342110
C5—C21—C26122.5 (3)N32—C34—H343110
C22—C21—C26118.7 (3)H341—C34—H342109
C5—C21—C22118.7 (3)H341—C34—H343109
C21—C22—C23120.9 (4)H342—C34—H343109
C22—C23—C24120.1 (4)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10ii0.78 (4)2.02 (4)2.768 (4)160 (3)
N3—H3···O9i0.83 (4)1.91 (3)2.663 (3)149 (3)
C7—H71···O31iii0.972.353.268 (5)157
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x+1/2, y1/2, z+1/2.
(II) aquabis[N-(4,4-diphenyl-5-oxo-4,5-dihydro-1H-imidazol-2- yl)glycinato]copper(II) dimethylformamide disolvate top
Crystal data top
[Cu(C20H21N4O4)2(H2O)]·2C3H7NOF(000) = 882
Mr = 844.38Dx = 1.341 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 14141 reflections
a = 8.7305 (3) Åθ = 2.7–28.0°
b = 30.0213 (5) ŵ = 0.59 mm1
c = 9.0447 (2) ÅT = 293 K
β = 118.102 (4)°Prism, blue
V = 2091.15 (12) Å30.30 × 0.25 × 0.22 mm
Z = 2
Data collection top
Kuma KM-4 CCD
diffractometer
7171 independent reflections
Radiation source: CX-Mo12x0.4-S Seifert Mo tube6447 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 8.2356 pixels mm-1θmax = 25.0°, θmin = 2.6°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 3535
Tmin = 0.825, Tmax = 0.882l = 1010
21287 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0437P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.026(Δ/σ)max = 0.001
wR(F2) = 0.066Δρmax = 0.20 e Å3
S = 1.00Δρmin = 0.17 e Å3
7171 reflectionsExtinction correction: SHELXTL (Bruker, 2003), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
545 parametersExtinction coefficient: 0.0024 (5)
0 restraintsAbsolute structure: Flack (1983), with 1462 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (1)
Hydrogen site location: inferred from neighbouring sites
Crystal data top
[Cu(C20H21N4O4)2(H2O)]·2C3H7NOV = 2091.15 (12) Å3
Mr = 844.38Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.7305 (3) ŵ = 0.59 mm1
b = 30.0213 (5) ÅT = 293 K
c = 9.0447 (2) Å0.30 × 0.25 × 0.22 mm
β = 118.102 (4)°
Data collection top
Kuma KM-4 CCD
diffractometer
7171 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
6447 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.882Rint = 0.016
21287 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066Δρmax = 0.20 e Å3
S = 1.00Δρmin = 0.17 e Å3
7171 reflectionsAbsolute structure: Flack (1983), with 1462 Friedel pairs
545 parametersAbsolute structure parameter: 0.00 (1)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.23376 (4)0.73110 (1)0.96070 (3)0.0410 (1)
O10.5298 (3)0.71475 (8)1.0725 (3)0.0800 (8)
O40.4293 (2)0.90778 (5)0.9854 (2)0.0514 (6)
O90.1622 (3)0.68377 (5)0.79326 (19)0.0537 (6)
O100.1085 (3)0.66750 (5)0.5345 (2)0.0633 (7)
O440.0452 (2)0.55349 (5)0.94614 (19)0.0517 (6)
O490.2791 (2)0.78043 (5)1.11801 (18)0.0492 (5)
O500.3073 (3)0.79813 (5)1.3663 (2)0.0606 (6)
N10.3273 (2)0.82801 (5)0.6714 (2)0.0384 (5)
N30.3387 (2)0.83549 (5)0.9181 (2)0.0394 (5)
N60.2350 (2)0.76765 (6)0.7797 (2)0.0393 (6)
N410.0931 (2)0.63795 (5)1.2317 (2)0.0383 (6)
N430.1086 (2)0.62767 (5)0.9974 (2)0.0381 (5)
N460.1770 (3)0.69893 (6)1.1186 (2)0.0420 (6)
C20.2965 (3)0.80705 (6)0.7852 (2)0.0337 (6)
C40.3932 (3)0.87584 (7)0.8932 (3)0.0364 (7)
C50.4032 (3)0.87201 (6)0.7283 (2)0.0330 (6)
C70.1964 (3)0.74098 (7)0.6300 (2)0.0446 (7)
C80.1523 (3)0.69381 (8)0.6523 (3)0.0444 (7)
C110.5969 (3)0.87405 (8)0.7785 (3)0.0433 (7)
C120.6920 (3)0.83617 (11)0.7925 (3)0.0693 (10)
C130.8748 (5)0.84057 (17)0.8500 (5)0.1082 (18)
C140.9483 (5)0.88226 (19)0.8873 (5)0.1075 (18)
C150.8551 (4)0.91867 (15)0.8749 (5)0.0957 (15)
C160.6799 (3)0.91488 (10)0.8198 (3)0.0641 (10)
C210.3020 (3)0.90749 (7)0.5964 (3)0.0402 (7)
C220.3055 (3)0.90600 (9)0.4442 (3)0.0549 (8)
C230.2139 (5)0.93693 (11)0.3226 (3)0.0793 (10)
C240.1245 (5)0.96959 (11)0.3485 (5)0.1063 (14)
C250.1212 (5)0.97158 (12)0.4960 (5)0.1120 (16)
C260.2088 (4)0.94048 (9)0.6234 (4)0.0760 (11)
C420.1288 (3)0.65827 (7)1.1198 (2)0.0342 (6)
C440.0665 (3)0.58626 (7)1.0298 (2)0.0365 (6)
C450.0474 (3)0.59098 (7)1.1910 (2)0.0352 (6)
C470.1962 (3)0.72663 (8)1.2590 (2)0.0468 (7)
C480.2657 (3)0.77214 (7)1.2508 (3)0.0421 (7)
C510.1418 (3)0.58053 (7)1.1470 (2)0.0376 (7)
C520.2528 (3)0.61316 (9)1.1457 (3)0.0555 (8)
C530.4240 (4)0.60250 (11)1.1013 (4)0.0721 (11)
C540.4832 (4)0.55945 (12)1.0574 (4)0.0692 (10)
C550.3729 (4)0.52759 (10)1.0605 (3)0.0640 (9)
C560.2025 (3)0.53757 (8)1.1055 (3)0.0519 (8)
C610.1750 (3)0.56119 (7)1.3347 (3)0.0390 (7)
C620.1678 (4)0.56138 (9)1.4826 (3)0.0587 (9)
C630.2828 (4)0.53717 (12)1.6178 (4)0.0775 (11)
C640.4050 (5)0.51109 (11)1.6046 (4)0.0914 (13)
C650.4139 (6)0.51080 (15)1.4600 (4)0.1214 (16)
C660.2965 (4)0.53544 (12)1.3241 (4)0.0868 (15)
O310.6205 (7)0.71035 (17)0.8111 (6)0.196 (3)
N320.6511 (4)0.66366 (13)0.6355 (4)0.1047 (14)
C31A0.6041 (9)0.6702 (3)0.7518 (8)0.115 (3)0.650
C33A0.6699 (14)0.6199 (3)0.5799 (12)0.189 (6)0.650
C34A0.6876 (10)0.6985 (3)0.5494 (11)0.155 (5)0.650
C31B0.6802 (17)0.7036 (3)0.7054 (17)0.119 (4)*0.350
C33B0.680 (3)0.6558 (7)0.4947 (17)0.163 (7)*0.350
C34B0.5725 (14)0.6344 (4)0.7057 (15)0.100 (3)*0.350
O710.7665 (5)0.76973 (13)0.3193 (6)0.200 (2)
N720.7741 (3)0.84430 (11)0.3386 (3)0.0828 (10)
C710.7215 (7)0.8061 (2)0.3681 (7)0.144 (3)
C730.7303 (8)0.88511 (19)0.3974 (7)0.164 (3)
C740.8666 (6)0.8464 (2)0.2544 (6)0.167 (3)
H10.304900.816800.575800.0460*
H1W0.560 (4)0.7134 (11)0.997 (4)0.084 (12)*
H2W0.597 (5)0.7355 (16)1.141 (5)0.137 (17)*
H30.331500.828501.006800.0470*
H7A0.296400.741000.610200.0540*
H7B0.099500.754100.533200.0540*
H120.638700.808400.765200.0830*
H130.942600.815600.862000.1290*
H141.066400.885200.922100.1290*
H150.908700.946400.903500.1150*
H160.615400.940400.810100.0770*
H220.369600.884200.425100.0660*
H230.213800.935200.219800.0950*
H240.065400.990700.265600.1280*
H250.059000.994300.513300.1340*
H260.204200.942100.723900.0910*
H410.096600.651001.317900.0460*
H430.121200.634000.911000.0460*
H47A0.275000.712301.363600.0560*
H47B0.084500.729801.256500.0560*
H520.213500.642301.174500.0670*
H530.499000.624501.101100.0860*
H540.598200.552501.026000.0830*
H550.412400.498501.031800.0770*
H560.127900.515101.107900.0620*
H620.083200.578301.491500.0700*
H630.278100.538401.718400.0930*
H640.481000.493801.694800.1100*
H650.498900.494001.451200.1450*
H660.301400.534201.223600.1040*
H33C0.585600.616000.464500.2270*0.650
H34A0.624400.693400.430800.1860*0.650
H34B0.809800.699100.584200.1860*0.650
H34C0.653000.726600.575300.1860*0.650
H31A0.560900.647100.790100.1380*0.650
H33A0.652100.597700.646800.2270*0.650
H33B0.784500.616800.591600.2270*0.650
H31B0.739800.725500.680600.1420*0.350
H33D0.707900.683500.459300.1960*0.350
H33E0.577100.643500.404400.1960*0.350
H33F0.774800.635400.525800.1960*0.350
H34D0.607400.643000.819300.1200*0.350
H34E0.609100.604400.703500.1200*0.350
H34F0.448400.636300.641100.1200*0.350
H710.653900.804800.422400.1740*
H73A0.636100.879400.421400.1970*
H73B0.696400.907600.312300.1970*
H73C0.829600.895200.497300.1970*
H74A0.988200.847200.332700.2000*
H74B0.835300.872900.186700.2000*
H74C0.842100.820700.183700.2000*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0781 (2)0.0272 (1)0.0321 (1)0.0105 (1)0.0379 (1)0.0062 (1)
O10.0912 (15)0.0761 (15)0.0757 (14)0.0113 (12)0.0417 (13)0.0035 (12)
O40.0815 (11)0.0337 (9)0.0460 (9)0.0115 (8)0.0359 (8)0.0115 (7)
O90.1097 (13)0.0320 (8)0.0404 (8)0.0187 (8)0.0527 (9)0.0093 (6)
O100.1257 (16)0.0407 (9)0.0455 (9)0.0273 (9)0.0584 (10)0.0177 (8)
O440.0831 (12)0.0355 (9)0.0478 (9)0.0116 (8)0.0401 (9)0.0151 (7)
O490.0979 (12)0.0286 (8)0.0398 (8)0.0129 (8)0.0480 (8)0.0076 (6)
O500.1205 (14)0.0384 (9)0.0470 (9)0.0277 (9)0.0594 (10)0.0192 (8)
N10.0666 (11)0.0261 (9)0.0307 (8)0.0085 (8)0.0296 (8)0.0034 (7)
N30.0673 (11)0.0303 (9)0.0320 (8)0.0048 (8)0.0327 (8)0.0035 (7)
N60.0732 (12)0.0265 (9)0.0303 (8)0.0077 (8)0.0345 (8)0.0048 (7)
N410.0671 (11)0.0274 (9)0.0350 (9)0.0085 (8)0.0361 (9)0.0059 (7)
N430.0645 (11)0.0302 (9)0.0326 (8)0.0098 (8)0.0337 (8)0.0057 (7)
N460.0764 (12)0.0284 (10)0.0351 (9)0.0136 (9)0.0377 (9)0.0093 (7)
C20.0505 (11)0.0259 (11)0.0300 (9)0.0009 (9)0.0233 (9)0.0014 (8)
C40.0481 (12)0.0297 (11)0.0352 (11)0.0018 (9)0.0227 (10)0.0017 (9)
C50.0441 (11)0.0272 (10)0.0321 (10)0.0036 (9)0.0215 (9)0.0016 (8)
C70.0786 (14)0.0376 (15)0.0292 (9)0.0102 (10)0.0349 (10)0.0061 (9)
C80.0759 (15)0.0331 (11)0.0386 (12)0.0136 (11)0.0388 (11)0.0103 (10)
C110.0463 (12)0.0513 (13)0.0339 (11)0.0024 (10)0.0203 (10)0.0026 (10)
C120.0627 (17)0.0790 (19)0.0685 (17)0.0161 (15)0.0328 (14)0.0077 (15)
C130.073 (2)0.148 (4)0.103 (3)0.041 (3)0.041 (2)0.016 (3)
C140.058 (2)0.159 (4)0.107 (3)0.011 (3)0.040 (2)0.028 (3)
C150.0561 (19)0.117 (3)0.109 (3)0.027 (2)0.0347 (18)0.019 (2)
C160.0508 (15)0.0731 (19)0.0654 (16)0.0125 (13)0.0248 (13)0.0026 (14)
C210.0469 (12)0.0285 (11)0.0376 (12)0.0052 (10)0.0136 (9)0.0021 (9)
C220.0661 (16)0.0513 (15)0.0399 (13)0.0117 (12)0.0189 (12)0.0047 (11)
C230.102 (2)0.0614 (19)0.0422 (14)0.0271 (18)0.0073 (15)0.0167 (14)
C240.122 (3)0.056 (2)0.074 (2)0.004 (2)0.009 (2)0.0303 (17)
C250.132 (3)0.062 (2)0.101 (3)0.050 (2)0.021 (2)0.019 (2)
C260.085 (2)0.0554 (17)0.0666 (18)0.0255 (15)0.0184 (15)0.0017 (14)
C420.0492 (11)0.0327 (11)0.0274 (9)0.0053 (9)0.0237 (9)0.0040 (8)
C440.0488 (12)0.0308 (11)0.0344 (10)0.0045 (9)0.0233 (9)0.0055 (9)
C450.0525 (12)0.0262 (10)0.0329 (10)0.0062 (9)0.0250 (9)0.0031 (8)
C470.0847 (14)0.0375 (12)0.0366 (9)0.0175 (13)0.0438 (10)0.0091 (10)
C480.0743 (15)0.0303 (11)0.0364 (11)0.0070 (10)0.0382 (11)0.0052 (9)
C510.0484 (12)0.0360 (12)0.0329 (10)0.0004 (9)0.0229 (9)0.0043 (8)
C520.0595 (15)0.0490 (14)0.0629 (15)0.0009 (12)0.0329 (12)0.0014 (12)
C530.0624 (17)0.078 (2)0.084 (2)0.0096 (15)0.0411 (15)0.0057 (16)
C540.0541 (16)0.092 (2)0.0640 (17)0.0164 (16)0.0300 (14)0.0016 (16)
C550.0653 (17)0.0629 (17)0.0580 (15)0.0232 (14)0.0242 (13)0.0039 (12)
C560.0564 (15)0.0380 (13)0.0596 (14)0.0087 (11)0.0260 (11)0.0018 (11)
C610.0471 (12)0.0305 (11)0.0396 (12)0.0063 (9)0.0206 (10)0.0033 (9)
C620.0666 (16)0.0686 (17)0.0397 (13)0.0045 (14)0.0241 (13)0.0062 (12)
C630.089 (2)0.096 (2)0.0395 (15)0.002 (2)0.0237 (15)0.0117 (16)
C640.106 (3)0.075 (2)0.0586 (18)0.0315 (19)0.0103 (17)0.0112 (16)
C650.137 (3)0.133 (3)0.072 (2)0.086 (3)0.031 (2)0.012 (2)
C660.106 (3)0.109 (3)0.0491 (16)0.059 (2)0.0397 (17)0.0129 (16)
O310.261 (5)0.220 (5)0.170 (4)0.088 (4)0.154 (4)0.013 (3)
N320.088 (2)0.146 (3)0.081 (2)0.007 (2)0.0406 (17)0.015 (2)
C31A0.133 (5)0.137 (6)0.087 (4)0.006 (5)0.062 (4)0.029 (4)
C33A0.232 (11)0.196 (11)0.106 (6)0.002 (9)0.053 (7)0.026 (7)
C34A0.137 (6)0.228 (10)0.148 (7)0.015 (6)0.107 (6)0.056 (7)
O710.152 (3)0.125 (3)0.223 (5)0.020 (3)0.007 (3)0.050 (3)
N720.0697 (15)0.100 (2)0.0762 (17)0.0162 (15)0.0323 (13)0.0059 (15)
C710.131 (4)0.168 (5)0.147 (4)0.055 (4)0.076 (3)0.033 (4)
C730.185 (6)0.152 (5)0.121 (4)0.020 (4)0.043 (4)0.024 (4)
C740.109 (3)0.311 (9)0.098 (3)0.021 (4)0.063 (3)0.036 (4)
Geometric parameters (Å, º) top
Cu1—O12.341 (3)C45—C611.538 (3)
Cu1—O91.9523 (15)C47—C481.511 (3)
Cu1—O491.9606 (15)C51—C561.378 (3)
Cu1—N61.9751 (17)C51—C521.374 (4)
Cu1—N461.971 (2)C52—C531.390 (5)
O4—C41.211 (3)C53—C541.379 (5)
O9—C81.273 (3)C54—C551.348 (5)
O10—C81.234 (3)C55—C561.378 (5)
O44—C441.201 (2)C61—C661.352 (5)
O49—C481.285 (3)C61—C621.369 (4)
O50—C481.214 (3)C62—C631.369 (4)
O1—H2W0.88 (5)C63—C641.373 (6)
O1—H1W0.84 (4)C64—C651.346 (5)
O31—C31A1.300 (10)C65—C661.386 (5)
O31—C31B1.302 (16)C7—H7A0.97
O71—C711.306 (7)C7—H7B0.97
N1—C51.459 (2)C12—H120.93
N1—C21.337 (3)C13—H130.93
N3—C41.359 (3)C14—H140.93
N3—C21.376 (2)C15—H150.93
N6—C71.469 (2)C16—H160.93
N6—C21.290 (3)C22—H220.93
N41—C421.338 (3)C23—H230.93
N41—C451.465 (3)C24—H240.93
N43—C421.384 (2)C25—H250.93
N43—C441.367 (3)C26—H260.93
N46—C421.293 (3)C47—H47A0.97
N46—C471.460 (3)C47—H47B0.97
N1—H10.86C52—H520.93
N3—H30.86C53—H530.93
N41—H410.86C54—H540.93
N43—H430.86C55—H550.93
N32—C33B1.43 (2)C56—H560.93
N32—C31A1.312 (8)C62—H620.93
N32—C33A1.443 (10)C63—H630.93
N32—C34A1.427 (10)C64—H640.93
N32—C31B1.323 (11)C65—H650.93
N32—C34B1.434 (13)C66—H660.93
N72—C731.457 (7)C31A—H31A0.93
N72—C741.347 (6)C31B—H31B0.93
N72—C711.309 (7)C33A—H33C0.96
C4—C51.539 (3)C33A—H33A0.96
C5—C111.532 (4)C33A—H33B0.96
C5—C211.532 (3)C33B—H33D0.96
C7—C81.506 (3)C33B—H33E0.96
C11—C161.383 (4)C33B—H33F0.96
C11—C121.378 (4)C34A—H34C0.96
C12—C131.433 (6)C34A—H34A0.96
C13—C141.374 (7)C34A—H34B0.96
C14—C151.336 (7)C34B—H34E0.96
C15—C161.372 (5)C34B—H34F0.96
C21—C221.392 (4)C34B—H34D0.96
C21—C261.375 (4)C71—H710.93
C22—C231.372 (4)C73—H73A0.96
C23—C241.341 (6)C73—H73B0.96
C24—C251.349 (6)C73—H73C0.96
C25—C261.398 (5)C74—H74A0.96
C44—C451.550 (3)C74—H74B0.96
C45—C511.538 (4)C74—H74C0.96
O1—Cu1—O993.86 (10)C61—C62—C63121.3 (3)
O1—Cu1—O4992.32 (8)C62—C63—C64119.9 (3)
O1—Cu1—N692.21 (8)C63—C64—C65119.4 (3)
O1—Cu1—N46100.81 (9)C64—C65—C66120.1 (4)
O9—Cu1—O49173.81 (9)C61—C66—C65121.3 (3)
O9—Cu1—N683.46 (7)C8—C7—H7A110.00
O9—Cu1—N4696.18 (8)N6—C7—H7A110.00
O49—Cu1—N695.96 (7)N6—C7—H7B110.00
O49—Cu1—N4682.99 (7)H7A—C7—H7B108.00
N6—Cu1—N46166.97 (9)C8—C7—H7B109.00
Cu1—O9—C8116.78 (15)C11—C12—H12121.00
Cu1—O49—C48117.13 (14)C13—C12—H12121.00
H1W—O1—H2W104 (4)C12—C13—H13120.00
Cu1—O1—H1W111 (2)C14—C13—H13121.00
Cu1—O1—H2W113 (3)C13—C14—H14119.00
C2—N1—C5112.16 (15)C15—C14—H14119.00
C2—N3—C4112.28 (18)C16—C15—H15120.00
Cu1—N6—C2129.94 (13)C14—C15—H15120.00
Cu1—N6—C7111.88 (13)C15—C16—H16119.00
C2—N6—C7116.48 (17)C11—C16—H16119.00
C42—N41—C45112.44 (16)C21—C22—H22120.00
C42—N43—C44112.21 (17)C23—C22—H22120.00
Cu1—N46—C42131.50 (15)C22—C23—H23119.00
Cu1—N46—C47112.71 (15)C24—C23—H23119.00
C42—N46—C47115.8 (2)C23—C24—H24120.00
C2—N1—H1124.00C25—C24—H24120.00
C5—N1—H1124.00C24—C25—H25119.00
C4—N3—H3124.00C26—C25—H25119.00
C2—N3—H3124.00C21—C26—H26121.00
C42—N41—H41124.00C25—C26—H26121.00
C45—N41—H41124.00C48—C47—H47A109.00
C42—N43—H43124.00C48—C47—H47B109.00
C44—N43—H43124.00H47A—C47—H47B108.00
C33A—N32—C34A112.7 (6)N46—C47—H47B109.00
C31B—N32—C34B111.6 (8)N46—C47—H47A110.00
C33B—N32—C34B128.0 (10)C53—C52—H52120.00
C31A—N32—C34A124.2 (6)C51—C52—H52120.00
C31B—N32—C33B120.0 (11)C52—C53—H53120.00
C31A—N32—C33A123.1 (7)C54—C53—H53120.00
C73—N72—C74119.8 (4)C53—C54—H54120.00
C71—N72—C74121.2 (4)C55—C54—H54120.00
C71—N72—C73119.0 (4)C54—C55—H55120.00
N3—C2—N6122.55 (19)C56—C55—H55120.00
N1—C2—N6129.24 (17)C55—C56—H56120.00
N1—C2—N3108.20 (16)C51—C56—H56120.00
N3—C4—C5106.16 (17)C61—C62—H62119.00
O4—C4—N3126.1 (2)C63—C62—H62119.00
O4—C4—C5127.7 (2)C64—C63—H63120.00
C4—C5—C21115.32 (19)C62—C63—H63120.00
C4—C5—C11105.57 (17)C63—C64—H64120.00
C11—C5—C21110.8 (2)C65—C64—H64120.00
N1—C5—C4100.71 (17)C64—C65—H65120.00
N1—C5—C21110.82 (16)C66—C65—H65120.00
N1—C5—C11113.29 (18)C65—C66—H66119.00
N6—C7—C8110.56 (17)C61—C66—H66119.00
O9—C8—C7117.1 (2)O31—C31A—N32117.0 (7)
O10—C8—C7118.8 (2)O31—C31B—N32116.0 (10)
O9—C8—O10124.1 (2)O31—C31A—H31A122.00
C12—C11—C16119.4 (3)N32—C31A—H31A121.00
C5—C11—C16118.7 (2)N32—C31B—H31B122.00
C5—C11—C12121.8 (2)O31—C31B—H31B122.00
C11—C12—C13118.5 (3)N32—C33A—H33C110.00
C12—C13—C14119.0 (4)H33A—C33A—H33B109.00
C13—C14—C15122.0 (4)N32—C33A—H33B109.00
C14—C15—C16119.6 (4)H33A—C33A—H33C109.00
C11—C16—C15121.6 (3)H33B—C33A—H33C109.00
C22—C21—C26119.3 (2)N32—C33A—H33A109.00
C5—C21—C26122.4 (2)N32—C33B—H33E110.00
C5—C21—C22118.3 (2)N32—C33B—H33F110.00
C21—C22—C23119.7 (3)H33D—C33B—H33E109.00
C22—C23—C24121.5 (3)N32—C33B—H33D109.00
C23—C24—C25119.4 (3)H33D—C33B—H33F109.00
C24—C25—C26121.8 (4)H33E—C33B—H33F110.00
C21—C26—C25118.3 (3)H34A—C34A—H34C109.00
N41—C42—N43108.36 (18)N32—C34A—H34C109.00
N41—C42—N46129.01 (18)H34A—C34A—H34B110.00
N43—C42—N46122.63 (19)N32—C34A—H34A110.00
N43—C44—C45106.11 (16)N32—C34A—H34B110.00
O44—C44—N43125.98 (19)H34B—C34A—H34C109.00
O44—C44—C45127.9 (2)N32—C34B—H34F109.00
C51—C45—C61111.23 (19)H34D—C34B—H34F109.00
C44—C45—C51108.43 (16)H34E—C34B—H34F110.00
N41—C45—C61110.14 (16)H34D—C34B—H34E110.00
C44—C45—C61112.7 (2)N32—C34B—H34D109.00
N41—C45—C44100.79 (17)N32—C34B—H34E109.00
N41—C45—C51113.18 (19)O71—C71—N72118.3 (6)
N46—C47—C48110.89 (19)O71—C71—H71121.00
O49—C48—C47115.89 (19)N72—C71—H71121.00
O49—C48—O50123.9 (2)N72—C73—H73A109.00
O50—C48—C47120.2 (2)N72—C73—H73B109.00
C52—C51—C56119.1 (3)N72—C73—H73C109.00
C45—C51—C56119.3 (2)H73A—C73—H73B109.00
C45—C51—C52121.6 (2)H73A—C73—H73C109.00
C51—C52—C53119.8 (3)H73B—C73—H73C109.00
C52—C53—C54120.3 (3)N72—C74—H74A109.00
C53—C54—C55119.5 (3)N72—C74—H74B109.00
C54—C55—C56120.9 (3)N72—C74—H74C110.00
C51—C56—C55120.5 (3)H74A—C74—H74B109.00
C62—C61—C66118.1 (3)H74A—C74—H74C109.00
C45—C61—C66123.6 (2)H74B—C74—H74C109.00
C45—C61—C62118.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50i0.861.992.828 (2)166
N41—H41···O10ii0.861.982.821 (2)167
O1—H1W···O310.84 (4)1.99 (4)2.828 (6)178 (4)
O1—H2W···O71ii0.88 (5)1.90 (4)2.763 (5)168 (4)
N3—H3···O490.861.932.676 (2)144
N43—H43···O90.861.962.698 (3)143
C24—H24···O44iii0.932.533.453 (4)170
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x, y+1/2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(C17H14N3O3)2]·2C3H7NO[Cu(C20H21N4O4)2(H2O)]·2C3H7NO
Mr826.37844.38
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21
Temperature (K)291293
a, b, c (Å)8.987 (4), 14.075 (6), 16.208 (7)8.7305 (3), 30.0213 (5), 9.0447 (2)
β (°) 95.913 (6) 118.102 (4)
V3)2039.3 (15)2091.15 (12)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.600.59
Crystal size (mm)0.2 × 0.1 × 0.050.30 × 0.25 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Kuma KM-4 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.924, 0.9790.825, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
28748, 3590, 2815 21287, 7171, 6447
Rint0.0520.016
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.130, 1.14 0.026, 0.066, 1.00
No. of reflections35907171
No. of parameters269545
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.270.20, 0.17
Absolute structure?Flack (1983), with 1462 Friedel pairs
Absolute structure parameter?0.00 (1)

Computer programs: SMART (Bruker, 2002), CrysAlis CCD (Oxford Diffraction, 2006), SAINT-Plus (Bruker, 2003), CrysAlis RED (Oxford Diffraction, 2006), SHELXTL (Bruker, 2003), Mercury (Macrae et al., 2006), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) for (I) top
Cu1—O91.922 (2)O9—C81.292 (3)
Cu1—N61.951 (3)O10—C81.218 (4)
O4—C41.203 (4)
O9—Cu1—N684.32 (9)O9—Cu1—N6i95.68 (9)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10ii0.78 (4)2.02 (4)2.768 (4)160 (3)
N3—H3···O9i0.83 (4)1.91 (3)2.663 (3)149 (3)
C7—H71···O31iii0.972.353.268 (5)157
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x+1/2, y1/2, z+1/2.
Selected geometric parameters (Å, º) for (II) top
Cu1—O12.341 (3)Cu1—N461.971 (2)
Cu1—O91.9523 (15)O9—C81.273 (3)
Cu1—O491.9606 (15)O10—C81.234 (3)
Cu1—N61.9751 (17)
O1—Cu1—O993.86 (10)O9—Cu1—N683.46 (7)
O1—Cu1—O4992.32 (8)O9—Cu1—N4696.18 (8)
O1—Cu1—N692.21 (8)O49—Cu1—N695.96 (7)
O1—Cu1—N46100.81 (9)O49—Cu1—N4682.99 (7)
O9—Cu1—O49173.81 (9)N6—Cu1—N46166.97 (9)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50i0.861.992.828 (2)166
N41—H41···O10ii0.861.982.821 (2)167
O1—H1W···O310.84 (4)1.99 (4)2.828 (6)178 (4)
O1—H2W···O71ii0.88 (5)1.90 (4)2.763 (5)168 (4)
N3—H3···O490.861.932.676 (2)144
N43—H43···O90.861.962.698 (3)143
C24—H24···O44iii0.932.533.453 (4)170
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x, y+1/2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds