Download citation
Download citation
link to html
The title compounds, C20H17NO3S, (I), and C19H15NO2S, (II), were prepared by the reaction of benzo[b]thio­phene-2-carbaldehyde with (3,4,5-trimethoxy­phenyl)­acetonitrile and (3,4-dimethoxy­phenyl)­acetonitrile, respectively, in the presence of methanolic potassium hydroxide. In (I), the C=C bond linking the benzo[b]thio­phene and the 3,4,5-trimethoxy­phenyl units has E geometry, with dihedral angles between the plane of the bridging unit and the planes of the two adjacent ring systems of 5.2 (3) and 13.1 (2)°, respectively. However, in (II), the C=C bond has Z geometry, with dihedral angles between the plane of the bridging unit and the planes of the adjacent benzo[b]thio­phene and 3,4-dimethoxy­phenyl units of 4.84 (17) and 76.09 (7)°, respectively. There are no significant inter­molecular hydrogen-bonding inter­actions in the packing of (I) and (II). The packing is essentially stabilized via van der Waals forces.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107054959/hj3056sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107054959/hj3056Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107054959/hj3056IIsup3.hkl
Contains datablock II

CCDC references: 672560; 672561

Comment top

2,3-Diarylacrylonitriles are very important synthons for the synthesis of a wide spectrum of biologically active molecules (Loupy et al., 2005). These compounds have been shown to possess spasmolytic, estrogenic, hypotensive, antioxidative, tuberculostatic, antitrichomonal, insecticidal and cytotoxic activities (Saczewski et al., 2004). Compounds of general structure 1 undergo interconversion to the corresponding E isomer in solution under certain conditions, which is dependent on the nature of the two groups linked across the double bond carrying the nitrile group, i.e. whether π-excessive (donating) or π-deficient (accepting). Normally, base-catalyzed condensation of aryl/heteroarylaldehydes with aryl/heteroarylacetonitriles leads to the formation of the Z isomer, but isomerism to the E form can be readily monitored by NMR studies. In connection with our ongoing research, we have undertaken the synthesis of a series of novel substituted aryl/heteroarylacrylonitriles. Compounds (I) and (II) were prepared by the reaction of benzo[b]thiophene-2-carboxaldehyde with 3,4,5-trimethoxyphenylacetonitrile and 3,4-dimethoxyphenylacetonitrile in the presence of methanolic potassium hydroxide under reflux. In order to obtain detailed information on the structural conformation of these molecules and to confirm the geometry, their X-ray structure determination has been carried out. Recrystallization from ethyl acetate afforded yellow needles of (I) that were suitable for X-ray analysis, but (II) afforded yellow silky needles that were not suitable for X-ray analysis. Furthermore, when (II) was crystallized from a mixture of ethyl acetate and chloroform by slow evaporation at room temperature over a period of one week, a mixture of yellow crystals (fine silky crystals as well as crystalline hexagons) were obtained.

The molecular structure and the atom-numbering scheme of (I) is shown in Fig. 1; selected bond lengths and angles are listed in Table 1. In (I), the olefinic bond connecting the 3,4,5-trimethoxyphenyl and benzo[b]thiophene rings has the E geometry. Significant deviations from the ideal bond-angle geometry around the Csp2 atoms of the double bond are observed. The C11—C10—C17, C10C9—C1, and C9—C1—S1 bond angles [115.92 (16)°, 130.57 (17)°, and 125.51 (14)° respectively] are distorted owing to steric hindrance of the double bond linking the two ring systems. Neither the benzo[b]thiophene ring nor the phenyl ring of the 3,4,5-trimethoxyphenyl group is coplanar with the vinyl double bond, making a dihedral angle of 5.2 (3) and 13.1 (2)° respectively. The C9C10 double bond [1.366 (2) Å] in (I) is slightly larger than that observed in the disubstituted olefinic group of 2-styrylbenzimidazole [1.304 (4) Å; Bacelo et al., 1997], suggesting some delocalization in the unsaturated bridging units. This fact is further supported by the C1—C9 bond length [1.443 (2) Å], which is slightly shorter than the Car—Csp2 single bond (Wilson, 1992), suggesting extensive conjugation between the π-electron system of the benzo[b]thiophene and the central double bond.

The observed O—C bond lengths are in agreement with values found for the aromatic methoxy group. There is an asymmetry of the exocyclic angles at atoms C13 and C15 [O1—C13—C12/O1—C13—C14 = 124.09 (16)/115.20 (15)°] and [O3—C15—C16/O3—C15—C14 = 124.20 (16)/115.42 (15)°]. This is caused by the tendency of the methoxy group to be coplanar with the benzene ring, owing to conjugation of the O1 and O3 lone pairs with the benzene ring (Domiano et al., 1979). However, the exocyclic angles [C15—C14—O2/C13—C14—O2 = 120.21 (16)/120.61 (16)°] at atom C14 are symmetric because of the influence of the adjacent methoxy groups, which force the O—C bond of the central methoxy group out of the plane of the aromatic ring at an angle that is approximately perpendicular to the plane of the aromatic ring, affording an almost symmetrical structure. This is contrary to what is observed with a single methoxy substituent at this position on the aromatic ring (Sonar et al., 2006), where the O—C bond of the methoxy group is coplanar with the aromatic ring, resulting in asymmetry in the aromatic ring and a consequent difference in the exocyclic angles adjacent to the methoxy group.

Fig. 2 shows an ellipsoid plot of (II), and selected geometric parameters are presented in Table 2. The olefinic bond connecting the 3,4-dimethoxyphenyl and benzo[b]thiophene rings in compound (II) has the Z-geometry. The bond angles around the Csp2 atoms are distorted from the standard value (120°). The C11—C10—C17, C10C9—C1 and C9—C10—C11 bond angles [116.69 (18)°, 129.9 (2)°, and 125.2 (2)° respectively] are distorted owing to steric hindrance of the double bond linking the two ring systems. The plane of the 3,4-dimethoxyphenyl ring is twisted with respect to the plane of the benzo[b]thiophene ring. The 3,4-dimethoxyphenyl and benzo[b]thiophene planes make dihedral angles of 76.09 (7) and 4.84 (17)° respectively, with the plane of the central vinyl moiety. In compound (II), the bridging unit C9C10 [1.346 (3) Å] is slightly larger than expected [1.304 (4) Å; Bacelo et al., 1997]. However, the C1—C9 bond length [1.443 (2) Å] is slightly shorter than a typical Car—Csp2 single bond (Wilson, 1992), suggesting extensive conjugation between the π-electron system of the benzo[b]thiophene and the central double bond.

The observed O—C bond lengths are in agreement with values found for anisoles. There is an asymmetry of the exocyclic angles at C13 and C14 [O1—C13—C12/O1—C13—C14 = 124.98 (18)/115.58 (17)°] and [O2—C14—C15/O2—C14—C13 = 124.73 (19)/115.23 (18)°]. This is caused by the tendency of the methoxy group to be coplanar with the benzene ring, owing to conjugation of the O1 and O2 lone pairs with the benzene ring (Domiano et al., 1979).

There are no significant intermolecular hydrogen-bonding interactions in the packing of (I) and (II). The packing is essentially stabilized via van der Waals forces.

Related literature top

For related literature, see: Bacelo et al. (1997); Loupy et al. (2005); Saczewski et al. (2004); Sonar et al. (2004, 2006); Wilson (1992).

Experimental top

The title compounds were prepared according to the previously reported procedure of Sonar et al. (2004). Recrystallization from ethyl acetate afforded yellow needles of (I), which were suitable for X-ray analysis; compound (II) was crystallized from a mixture of ethyl acetate and chloroform by slow evaporation over a period of one week affording pale-yellow crystals. For (I): 1H NMR (DMSO-d6, p.p.m.): δ 3.72 (s, 3H), 3.88 (s, 6H), 7.04 (s, 2H), 7.43–7.52 (m, 2H), 7.99 (dd, 1H), 8.03 (s, 1H), 8.09 (dd, 1H), 8.40 (s, 1H); 13C NMR (DMSO-d6, p.p.m.): δ 56.12, 60.18, 103.25, 108.75, 117.66, 122.67, 124.69, 125.18, 126.70, 128.67, 131.48, 135.52, 137.30, 138.01, 138.42, 140.17, 153.11. For (II): 1H NMR (DMSO-d6, p.p.m.): δ 3.76 (s, 3H), 3.85 (s, 3H), 7.02–7.13 (m, 3H), 7.33–7.39 (sextet, 2H), 7.82–7.89 (m, 3H), 8.01 (s, 1H); 13C NMR (DMSO-d6, p.p.m.): δ 55.53, 55.62, 110.87, 112.16, 119.97, 121.84, 122.31, 123.43, 124.48, 124.86, 126.52, 132.27, 136.55, 137.28, 138.01, 140.85, 149.02, 150.00.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions, with constrained C—H distances of 0.98 Å for methyl H atoms and 0.95 Å for all other H atoms. Uiso(H) values were set to either 1.5Ueq of the attached C atom (CHMe) or 1.2Ueq.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999). Cell refinement: DENZO-SMN (Otwinowski & Minor, 1997) for (I); SCALEPACK (Otwinowski & Minor, 1997) for (II). For both compounds, data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1995). Software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and local procedures for (I); SHELX97-2 (Sheldrick, 1997) and local procedures for (II).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level and H atoms shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the asymmetric unit of (II), with displacement ellipsoids drawn at the 50% probability level and H atoms shown as small spheres of arbitrary radii.
(I) (E)-3-(Benzo[b]thiophen-2-yl)-2-(3,4,5- trimethoxyphenyl)acrylonitrile top
Crystal data top
C20H17NO3SF(000) = 736
Mr = 351.41Dx = 1.376 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4000 reflections
a = 7.4136 (1) Åθ = 1.0–27.5°
b = 23.4782 (3) ŵ = 0.21 mm1
c = 10.3932 (2) ÅT = 90 K
β = 110.3689 (6)°Block, yellow
V = 1695.90 (5) Å30.40 × 0.15 × 0.15 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3894 independent reflections
Radiation source: fine-focus sealed tube2800 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 18 pixels mm-1θmax = 27.5°, θmin = 1.7°
ω scans at fixed χ = 55°h = 99
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 3030
Tmin = 0.921, Tmax = 0.969l = 1313
7649 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0734P)2]
where P = (Fo2 + 2Fc2)/3
3894 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C20H17NO3SV = 1695.90 (5) Å3
Mr = 351.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4136 (1) ŵ = 0.21 mm1
b = 23.4782 (3) ÅT = 90 K
c = 10.3932 (2) Å0.40 × 0.15 × 0.15 mm
β = 110.3689 (6)°
Data collection top
Nonius KappaCCD
diffractometer
3894 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
2800 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.969Rint = 0.037
7649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.07Δρmax = 0.65 e Å3
3894 reflectionsΔρmin = 0.29 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3938 (3)0.10313 (7)0.69464 (18)0.0174 (4)
C20.2318 (3)0.12391 (8)0.59714 (18)0.0190 (4)
H20.23140.15650.54280.023*
C30.0630 (3)0.09190 (8)0.58485 (18)0.0174 (4)
C40.1279 (3)0.10123 (8)0.49813 (18)0.0194 (4)
H40.15890.13260.43640.023*
C50.2693 (3)0.06441 (8)0.50385 (18)0.0216 (4)
H50.39870.07060.44580.026*
C60.2255 (3)0.01792 (8)0.59391 (18)0.0223 (4)
H60.32540.00710.59540.027*
C70.0398 (3)0.00793 (8)0.68028 (18)0.0201 (4)
H70.01070.02350.74160.024*
C80.1047 (3)0.04518 (8)0.67566 (18)0.0167 (4)
C90.5784 (3)0.13082 (8)0.72847 (18)0.0177 (4)
H90.57990.16270.67270.021*
C100.7512 (3)0.11865 (7)0.82757 (18)0.0171 (4)
C110.9257 (2)0.15426 (7)0.85742 (17)0.0167 (4)
C120.9141 (3)0.20886 (8)0.80229 (18)0.0169 (4)
H120.79590.22230.73860.020*
C131.0761 (2)0.24353 (7)0.84090 (18)0.0164 (4)
C141.2515 (2)0.22414 (7)0.93442 (18)0.0169 (4)
C151.2635 (3)0.16874 (8)0.98500 (18)0.0171 (4)
C161.1015 (3)0.13394 (8)0.94715 (18)0.0165 (4)
H161.11050.09630.98240.020*
C170.7683 (2)0.07009 (8)0.91516 (18)0.0182 (4)
C180.9084 (3)0.31770 (8)0.68987 (19)0.0239 (4)
H18A0.88570.29410.60800.036*
H18B0.92540.35750.66780.036*
H18C0.79780.31480.72060.036*
C191.5106 (3)0.26532 (10)0.8875 (2)0.0336 (5)
H19A1.56400.22820.87640.050*
H19B1.61540.29280.92420.050*
H19C1.42280.27860.79830.050*
C201.4546 (3)0.09798 (8)1.13619 (18)0.0231 (4)
H20A1.36990.09701.19050.035*
H20B1.58770.09121.19630.035*
H20C1.41530.06831.06550.035*
N10.7871 (2)0.03196 (7)0.98803 (17)0.0270 (4)
O11.07742 (18)0.29845 (5)0.79637 (13)0.0203 (3)
O21.40808 (17)0.25991 (5)0.98027 (13)0.0201 (3)
O31.44129 (17)0.15257 (5)1.07228 (13)0.0204 (3)
S10.34697 (7)0.042019 (19)0.77452 (5)0.01819 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0181 (10)0.0164 (9)0.0178 (9)0.0015 (7)0.0062 (8)0.0005 (7)
C20.0195 (10)0.0191 (10)0.0173 (9)0.0003 (8)0.0051 (8)0.0014 (8)
C30.0172 (10)0.0184 (10)0.0160 (9)0.0016 (7)0.0048 (8)0.0021 (7)
C40.0188 (10)0.0210 (10)0.0167 (9)0.0035 (8)0.0040 (8)0.0007 (8)
C50.0154 (10)0.0290 (11)0.0177 (9)0.0009 (8)0.0023 (8)0.0028 (8)
C60.0171 (10)0.0272 (11)0.0222 (10)0.0055 (8)0.0064 (8)0.0021 (8)
C70.0210 (10)0.0204 (10)0.0170 (9)0.0023 (8)0.0042 (8)0.0007 (8)
C80.0149 (9)0.0187 (10)0.0151 (9)0.0007 (7)0.0033 (7)0.0023 (7)
C90.0191 (10)0.0169 (9)0.0169 (9)0.0024 (7)0.0061 (8)0.0002 (7)
C100.0185 (10)0.0160 (9)0.0170 (9)0.0021 (7)0.0064 (8)0.0009 (7)
C110.0170 (10)0.0189 (10)0.0147 (9)0.0017 (8)0.0060 (8)0.0032 (7)
C120.0158 (9)0.0181 (10)0.0167 (9)0.0004 (7)0.0055 (8)0.0001 (7)
C130.0173 (9)0.0147 (9)0.0188 (9)0.0006 (7)0.0082 (8)0.0008 (7)
C140.0150 (9)0.0161 (9)0.0202 (9)0.0029 (7)0.0070 (8)0.0025 (7)
C150.0153 (9)0.0184 (9)0.0159 (9)0.0026 (7)0.0032 (8)0.0002 (7)
C160.0173 (10)0.0156 (9)0.0165 (9)0.0004 (7)0.0057 (8)0.0004 (7)
C170.0117 (9)0.0215 (10)0.0183 (9)0.0023 (8)0.0014 (7)0.0006 (8)
C180.0254 (11)0.0219 (10)0.0213 (10)0.0007 (8)0.0041 (9)0.0053 (8)
C190.0300 (12)0.0388 (13)0.0395 (13)0.0132 (10)0.0215 (11)0.0093 (10)
C200.0232 (11)0.0201 (10)0.0206 (10)0.0003 (8)0.0008 (9)0.0055 (8)
N10.0184 (9)0.0294 (10)0.0277 (9)0.0029 (7)0.0010 (8)0.0091 (8)
O10.0177 (7)0.0150 (7)0.0252 (7)0.0010 (5)0.0039 (6)0.0033 (5)
O20.0183 (7)0.0180 (7)0.0237 (7)0.0054 (5)0.0072 (6)0.0044 (5)
O30.0138 (7)0.0181 (7)0.0240 (7)0.0007 (5)0.0003 (6)0.0035 (5)
S10.0152 (3)0.0175 (3)0.0192 (3)0.00158 (18)0.00255 (19)0.00203 (18)
Geometric parameters (Å, º) top
C1—C21.364 (2)C12—C131.389 (2)
C1—C91.443 (2)C12—H120.9500
C1—S11.7519 (18)C13—O11.371 (2)
C2—C31.427 (3)C13—C141.401 (2)
C2—H20.9500C14—O21.376 (2)
C3—C41.406 (2)C14—C151.394 (3)
C3—C81.409 (3)C15—O31.368 (2)
C4—C51.376 (3)C15—C161.391 (2)
C4—H40.9500C16—H160.9500
C5—C61.401 (3)C17—N11.149 (2)
C5—H50.9500C18—O11.426 (2)
C6—C71.377 (3)C18—H18A0.9800
C6—H60.9500C18—H18B0.9800
C7—C81.397 (3)C18—H18C0.9800
C7—H70.9500C19—O21.426 (2)
C8—S11.7328 (19)C19—H19A0.9800
C9—C101.366 (2)C19—H19B0.9800
C9—H90.9500C19—H19C0.9800
C10—C171.437 (2)C20—O31.431 (2)
C10—C111.480 (2)C20—H20A0.9800
C11—C121.394 (2)C20—H20B0.9800
C11—C161.396 (2)C20—H20C0.9800
C2—C1—C9122.33 (17)O1—C13—C12124.09 (16)
C2—C1—S1112.12 (14)O1—C13—C14115.20 (15)
C9—C1—S1125.51 (14)C12—C13—C14120.68 (17)
C1—C2—C3113.33 (17)O2—C14—C15120.21 (16)
C1—C2—H2123.3O2—C14—C13120.61 (16)
C3—C2—H2123.3C15—C14—C13119.13 (16)
C4—C3—C8119.20 (17)O3—C15—C16124.20 (16)
C4—C3—C2129.14 (17)O3—C15—C14115.42 (15)
C8—C3—C2111.66 (16)C16—C15—C14120.38 (16)
C5—C4—C3119.12 (17)C15—C16—C11120.09 (17)
C5—C4—H4120.4C15—C16—H16120.0
C3—C4—H4120.4C11—C16—H16120.0
C4—C5—C6121.04 (17)N1—C17—C10177.9 (2)
C4—C5—H5119.5O1—C18—H18A109.5
C6—C5—H5119.5O1—C18—H18B109.5
C7—C6—C5121.01 (18)H18A—C18—H18B109.5
C7—C6—H6119.5O1—C18—H18C109.5
C5—C6—H6119.5H18A—C18—H18C109.5
C6—C7—C8118.41 (18)H18B—C18—H18C109.5
C6—C7—H7120.8O2—C19—H19A109.5
C8—C7—H7120.8O2—C19—H19B109.5
C7—C8—C3121.22 (17)H19A—C19—H19B109.5
C7—C8—S1127.02 (15)O2—C19—H19C109.5
C3—C8—S1111.76 (14)H19A—C19—H19C109.5
C10—C9—C1130.57 (17)H19B—C19—H19C109.5
C10—C9—H9114.7O3—C20—H20A109.5
C1—C9—H9114.7O3—C20—H20B109.5
C9—C10—C17119.79 (16)H20A—C20—H20B109.5
C9—C10—C11124.21 (16)O3—C20—H20C109.5
C17—C10—C11115.92 (16)H20A—C20—H20C109.5
C12—C11—C16119.89 (17)H20B—C20—H20C109.5
C12—C11—C10120.58 (17)C13—O1—C18116.90 (14)
C16—C11—C10119.46 (16)C14—O2—C19113.83 (14)
C13—C12—C11119.77 (17)C15—O3—C20116.82 (14)
C13—C12—H12120.1C8—S1—C191.12 (9)
C11—C12—H12120.1
C9—C1—C2—C3176.81 (16)C11—C12—C13—O1177.52 (16)
S1—C1—C2—C31.0 (2)C11—C12—C13—C140.2 (3)
C1—C2—C3—C4178.70 (17)O1—C13—C14—O22.7 (2)
C1—C2—C3—C81.1 (2)C12—C13—C14—O2175.21 (15)
C8—C3—C4—C50.2 (3)O1—C13—C14—C15179.89 (15)
C2—C3—C4—C5179.99 (18)C12—C13—C14—C152.2 (3)
C3—C4—C5—C60.3 (3)O2—C14—C15—O34.6 (2)
C4—C5—C6—C70.5 (3)C13—C14—C15—O3177.98 (15)
C5—C6—C7—C80.3 (3)O2—C14—C15—C16174.93 (16)
C6—C7—C8—C30.2 (3)C13—C14—C15—C162.5 (3)
C6—C7—C8—S1179.34 (14)O3—C15—C16—C11179.89 (15)
C4—C3—C8—C70.4 (3)C14—C15—C16—C110.4 (3)
C2—C3—C8—C7179.74 (16)C12—C11—C16—C152.1 (3)
C4—C3—C8—S1179.16 (13)C10—C11—C16—C15174.71 (16)
C2—C3—C8—S10.7 (2)C12—C13—O1—C188.9 (2)
C2—C1—C9—C10175.25 (18)C14—C13—O1—C18173.23 (15)
S1—C1—C9—C102.3 (3)C15—C14—O2—C19101.4 (2)
C1—C9—C10—C172.2 (3)C13—C14—O2—C1981.3 (2)
C1—C9—C10—C11174.59 (18)C16—C15—O3—C205.3 (3)
C9—C10—C11—C1212.3 (3)C14—C15—O3—C20174.25 (15)
C17—C10—C11—C12164.64 (16)C7—C8—S1—C1179.64 (18)
C9—C10—C11—C16170.96 (16)C3—C8—S1—C10.09 (14)
C17—C10—C11—C1612.1 (2)C2—C1—S1—C80.55 (14)
C16—C11—C12—C132.4 (3)C9—C1—S1—C8177.23 (17)
C10—C11—C12—C13174.38 (16)
(II) (Z)-3-(benzo[b]thiophen-2-yl)-2-(3,4- dimethoxyphenyl)acrylonitrile top
Crystal data top
C19H15NO2SF(000) = 672
Mr = 321.38Dx = 1.385 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3849 reflections
a = 9.2958 (2) Åθ = 1.0–27.5°
b = 6.0830 (1) ŵ = 0.22 mm1
c = 27.2763 (7) ÅT = 90 K
β = 92.1871 (10)°Plate, pale yellow
V = 1541.25 (6) Å30.27 × 0.22 × 0.06 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3528 independent reflections
Radiation source: fine-focus sealed tube2288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 18 pixels mm-1θmax = 27.5°, θmin = 1.5°
ω scans at fixed χ = 55°h = 1112
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 77
Tmin = 0.943, Tmax = 0.987l = 3535
6626 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0686P)2]
where P = (Fo2 + 2Fc2)/3
3528 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C19H15NO2SV = 1541.25 (6) Å3
Mr = 321.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2958 (2) ŵ = 0.22 mm1
b = 6.0830 (1) ÅT = 90 K
c = 27.2763 (7) Å0.27 × 0.22 × 0.06 mm
β = 92.1871 (10)°
Data collection top
Nonius KappaCCD
diffractometer
3528 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
2288 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.987Rint = 0.052
6626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.00Δρmax = 0.42 e Å3
3528 reflectionsΔρmin = 0.31 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38461 (5)0.47758 (9)0.124619 (19)0.02386 (18)
C10.4358 (2)0.3294 (3)0.07285 (7)0.0222 (5)
C20.5292 (2)0.6559 (4)0.11942 (7)0.0220 (5)
C30.5612 (2)0.8378 (4)0.14872 (8)0.0275 (5)
H30.50420.87290.17580.033*
C40.6774 (2)0.9657 (4)0.13743 (8)0.0299 (6)
H40.69951.09250.15660.036*
C50.7637 (2)0.9127 (4)0.09818 (8)0.0301 (6)
H50.84351.00360.09130.036*
C60.7346 (2)0.7308 (4)0.06940 (8)0.0278 (5)
H60.79460.69440.04320.033*
C70.6138 (2)0.5990 (4)0.07954 (7)0.0235 (5)
C80.5588 (2)0.4106 (4)0.05455 (8)0.0241 (5)
H80.60420.34670.02740.029*
C90.3577 (2)0.1446 (4)0.05200 (8)0.0241 (5)
H90.40140.07600.02510.029*
C100.2323 (2)0.0547 (3)0.06488 (7)0.0222 (5)
C110.1439 (2)0.1313 (4)0.10600 (7)0.0201 (5)
C120.1459 (2)0.0116 (3)0.14995 (7)0.0195 (5)
H120.20200.11850.15300.023*
C130.0666 (2)0.0820 (3)0.18888 (7)0.0182 (5)
C140.0166 (2)0.2740 (3)0.18395 (7)0.0194 (5)
C150.0195 (2)0.3904 (4)0.14021 (7)0.0208 (5)
H150.07650.51950.13680.025*
C160.0607 (2)0.3189 (3)0.10126 (7)0.0221 (5)
H160.05840.39920.07140.027*
C170.1769 (2)0.1288 (4)0.03658 (8)0.0258 (5)
N10.1309 (2)0.2751 (3)0.01413 (7)0.0380 (5)
O10.06264 (14)0.0206 (2)0.23333 (5)0.0212 (3)
C180.1533 (2)0.2088 (3)0.24029 (8)0.0260 (5)
H18A0.12760.31980.21540.039*
H18B0.14030.27020.27300.039*
H18C0.25410.16550.23720.039*
O20.08996 (14)0.3321 (2)0.22443 (5)0.0241 (4)
C190.1912 (2)0.5088 (4)0.21912 (8)0.0286 (5)
H19A0.13950.64650.21350.043*
H19B0.24560.52160.24910.043*
H19C0.25760.47930.19110.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0199 (3)0.0275 (3)0.0242 (3)0.0035 (2)0.0022 (2)0.0023 (2)
C10.0205 (11)0.0252 (12)0.0208 (11)0.0023 (9)0.0006 (9)0.0028 (9)
C20.0184 (11)0.0219 (12)0.0252 (11)0.0002 (9)0.0047 (9)0.0036 (10)
C30.0229 (12)0.0279 (13)0.0315 (13)0.0007 (10)0.0027 (10)0.0006 (11)
C40.0252 (12)0.0286 (14)0.0350 (13)0.0056 (10)0.0107 (10)0.0003 (10)
C50.0200 (12)0.0333 (14)0.0364 (13)0.0056 (11)0.0061 (10)0.0110 (11)
C60.0205 (12)0.0352 (14)0.0273 (12)0.0039 (10)0.0027 (9)0.0108 (11)
C70.0195 (11)0.0271 (13)0.0235 (11)0.0004 (10)0.0027 (9)0.0075 (10)
C80.0214 (11)0.0283 (13)0.0228 (11)0.0006 (10)0.0030 (9)0.0043 (10)
C90.0260 (12)0.0252 (13)0.0213 (11)0.0020 (10)0.0030 (9)0.0011 (10)
C100.0257 (12)0.0231 (12)0.0176 (10)0.0012 (10)0.0004 (9)0.0011 (9)
C110.0170 (11)0.0222 (12)0.0209 (11)0.0044 (9)0.0010 (9)0.0012 (9)
C120.0177 (11)0.0179 (11)0.0229 (11)0.0007 (9)0.0007 (9)0.0006 (9)
C130.0160 (10)0.0196 (11)0.0188 (10)0.0028 (9)0.0025 (8)0.0022 (9)
C140.0164 (10)0.0179 (11)0.0240 (11)0.0038 (9)0.0011 (9)0.0033 (9)
C150.0166 (11)0.0188 (12)0.0266 (11)0.0007 (9)0.0026 (9)0.0037 (9)
C160.0220 (11)0.0211 (12)0.0230 (11)0.0041 (9)0.0025 (9)0.0035 (9)
C170.0295 (13)0.0282 (14)0.0201 (11)0.0050 (11)0.0068 (10)0.0017 (10)
N10.0506 (13)0.0330 (13)0.0308 (11)0.0140 (11)0.0069 (10)0.0044 (10)
O10.0234 (8)0.0204 (8)0.0199 (7)0.0031 (6)0.0024 (6)0.0030 (6)
C180.0288 (12)0.0228 (12)0.0262 (12)0.0048 (10)0.0023 (10)0.0031 (10)
O20.0214 (8)0.0215 (8)0.0297 (8)0.0048 (6)0.0065 (6)0.0009 (7)
C190.0228 (12)0.0245 (13)0.0391 (13)0.0068 (10)0.0075 (10)0.0022 (10)
Geometric parameters (Å, º) top
S1—C21.737 (2)C11—C161.382 (3)
S1—C11.756 (2)C11—C121.402 (3)
C1—C81.358 (3)C12—C131.383 (3)
C1—C91.443 (3)C12—H120.9500
C2—C31.391 (3)C13—O11.365 (2)
C2—C71.409 (3)C13—C141.405 (3)
C3—C41.376 (3)C14—O21.366 (2)
C3—H30.9500C14—C151.387 (3)
C4—C51.400 (3)C15—C161.391 (3)
C4—H40.9500C15—H150.9500
C5—C61.377 (3)C16—H160.9500
C5—H50.9500C17—N11.153 (3)
C6—C71.416 (3)O1—C181.430 (2)
C6—H60.9500C18—H18A0.9800
C7—C81.419 (3)C18—H18B0.9800
C8—H80.9500C18—H18C0.9800
C9—C101.346 (3)O2—C191.432 (2)
C9—H90.9500C19—H19A0.9800
C10—C171.441 (3)C19—H19B0.9800
C10—C111.490 (3)C19—H19C0.9800
C2—S1—C191.18 (10)C16—C11—C10120.68 (18)
C8—C1—C9123.8 (2)C12—C11—C10119.48 (19)
C8—C1—S1111.50 (17)C13—C12—C11120.40 (19)
C9—C1—S1124.67 (16)C13—C12—H12119.8
C3—C2—C7121.7 (2)C11—C12—H12119.8
C3—C2—S1126.79 (17)O1—C13—C12124.98 (18)
C7—C2—S1111.46 (16)O1—C13—C14115.58 (17)
C4—C3—C2118.3 (2)C12—C13—C14119.43 (18)
C4—C3—H3120.9O2—C14—C15124.73 (19)
C2—C3—H3120.9O2—C14—C13115.32 (18)
C3—C4—C5121.2 (2)C15—C14—C13119.95 (19)
C3—C4—H4119.4C14—C15—C16120.3 (2)
C5—C4—H4119.4C14—C15—H15119.9
C6—C5—C4121.0 (2)C16—C15—H15119.9
C6—C5—H5119.5C11—C16—C15120.08 (19)
C4—C5—H5119.5C11—C16—H16120.0
C5—C6—C7118.9 (2)C15—C16—H16120.0
C5—C6—H6120.5N1—C17—C10179.2 (2)
C7—C6—H6120.5C13—O1—C18116.63 (15)
C2—C7—C6118.8 (2)O1—C18—H18A109.5
C2—C7—C8111.60 (18)O1—C18—H18B109.5
C6—C7—C8129.6 (2)H18A—C18—H18B109.5
C1—C8—C7114.21 (19)O1—C18—H18C109.5
C1—C8—H8122.9H18A—C18—H18C109.5
C7—C8—H8122.9H18B—C18—H18C109.5
C10—C9—C1129.9 (2)C14—O2—C19117.29 (16)
C10—C9—H9115.1O2—C19—H19A109.5
C1—C9—H9115.1O2—C19—H19B109.5
C9—C10—C17118.05 (19)H19A—C19—H19B109.5
C9—C10—C11125.2 (2)O2—C19—H19C109.5
C17—C10—C11116.69 (18)H19A—C19—H19C109.5
C16—C11—C12119.84 (19)H19B—C19—H19C109.5
C2—S1—C1—C81.94 (17)C1—C9—C10—C110.5 (4)
C2—S1—C1—C9177.93 (18)C9—C10—C11—C1676.2 (3)
C1—S1—C2—C3177.43 (19)C17—C10—C11—C16103.0 (2)
C1—S1—C2—C70.84 (16)C9—C10—C11—C12103.6 (3)
C7—C2—C3—C41.1 (3)C17—C10—C11—C1277.2 (3)
S1—C2—C3—C4177.03 (16)C16—C11—C12—C130.9 (3)
C2—C3—C4—C51.3 (3)C10—C11—C12—C13178.86 (18)
C3—C4—C5—C60.3 (3)C11—C12—C13—O1179.09 (18)
C4—C5—C6—C71.1 (3)C11—C12—C13—C140.3 (3)
C3—C2—C7—C60.2 (3)O1—C13—C14—O20.1 (2)
S1—C2—C7—C6178.62 (15)C12—C13—C14—O2179.31 (17)
C3—C2—C7—C8178.78 (19)O1—C13—C14—C15179.88 (17)
S1—C2—C7—C80.4 (2)C12—C13—C14—C150.4 (3)
C5—C6—C7—C21.3 (3)O2—C14—C15—C16179.14 (18)
C5—C6—C7—C8177.5 (2)C13—C14—C15—C160.6 (3)
C9—C1—C8—C7177.30 (19)C12—C11—C16—C150.8 (3)
S1—C1—C8—C72.6 (2)C10—C11—C16—C15179.01 (19)
C2—C7—C8—C11.9 (3)C14—C15—C16—C110.0 (3)
C6—C7—C8—C1176.9 (2)C12—C13—O1—C183.1 (3)
C8—C1—C9—C10176.5 (2)C14—C13—O1—C18176.31 (16)
S1—C1—C9—C103.3 (3)C15—C14—O2—C198.5 (3)
C1—C9—C10—C17178.7 (2)C13—C14—O2—C19171.76 (17)

Experimental details

(I)(II)
Crystal data
Chemical formulaC20H17NO3SC19H15NO2S
Mr351.41321.38
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)9090
a, b, c (Å)7.4136 (1), 23.4782 (3), 10.3932 (2)9.2958 (2), 6.0830 (1), 27.2763 (7)
β (°) 110.3689 (6) 92.1871 (10)
V3)1695.90 (5)1541.25 (6)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.210.22
Crystal size (mm)0.40 × 0.15 × 0.150.27 × 0.22 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.921, 0.9690.943, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
7649, 3894, 2800 6626, 3528, 2288
Rint0.0370.052
(sin θ/λ)max1)0.6500.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.07 0.047, 0.127, 1.00
No. of reflections38943528
No. of parameters229210
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.290.42, 0.31

Computer programs: COLLECT (Nonius, 1999), DENZO-SMN (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), XP in SHELXTL/PC (Sheldrick, 1995), SHELXL97 (Sheldrick, 1997) and local procedures, SHELX97-2 (Sheldrick, 1997) and local procedures.

Selected geometric parameters (Å, º) for (I) top
C1—S11.7519 (18)C15—O31.368 (2)
C8—S11.7328 (19)C17—N11.149 (2)
C10—C171.437 (2)C19—O21.426 (2)
C10—C111.480 (2)C20—O31.431 (2)
C14—O21.376 (2)
C9—C10—C17119.79 (16)C14—O2—C19113.83 (14)
O2—C14—C13120.61 (16)C15—O3—C20116.82 (14)
N1—C17—C10177.9 (2)C8—S1—C191.12 (9)
C2—C1—C9—C10175.25 (18)C1—C9—C10—C172.2 (3)
S1—C1—C9—C102.3 (3)C1—C9—C10—C11174.59 (18)
Selected geometric parameters (Å, º) for (II) top
S1—C21.737 (2)C14—O21.366 (2)
S1—C11.756 (2)C17—N11.153 (3)
C10—C171.441 (3)O2—C191.432 (2)
C10—C111.490 (3)
C2—S1—C191.18 (10)C13—O1—C18116.63 (15)
C9—C10—C17118.05 (19)C14—O2—C19117.29 (16)
N1—C17—C10179.2 (2)
C8—C1—C9—C10176.5 (2)C1—C9—C10—C17178.7 (2)
S1—C1—C9—C103.3 (3)C1—C9—C10—C110.5 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds