Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The reaction of enantio­merically pure planar chiral ferrocene phosphine thio­ether with bis­(aceto­nitrile)­dichlorido­palla­dium yields the title square-planar mononuclear palladium complex as an enantio­merically pure single diastereoisomer, [PdFe(C5H5)(C20H20PS)Cl2]. The planar chirality of the ligand is retained in the complex and fully controls the central chirality on the S atom. The absolute configuration, viz. S for the planar chirality and R for the S atom, is unequivocally determined by refinement of the Flack parameter.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107052742/hj3055sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107052742/hj3055Isup2.hkl
Contains datablock I

CCDC reference: 672407

Comment top

Owing to the huge importance of asymmetric catalysis for academic and industrial research, considerable efforts have been devoted to the development of new chiral ligands for transition metal-catalysed asymmetric catalysis (Noyori, 1994; Jacobsen et al., 1999; Ojima 2000). Chiral ferrocene-based ligands have proved to be of particular interest (Colacot, 2003; Atkinson et al., 2004; Gomez Arrayas et al., 2006) because of their stability, easy introduction of planar chirality (Togni, 1996; Riant & Kagan, 1997; Balavoine et al., 1998; Richards & Locke, 1998) and special stereoelectronic properties of the ferrocene skeleton.

We have recently developed new chiral ferrocene-based phosphine-thioether ligands having only planar chirality, in both racemic and enantiomerically pure forms (R or S configuration) (Routaboul et al., 2005; Mateus et al., 2006) and briefly reported on their coordination chemistry (Malacea, Manoury et al., 2006; Malacea, Daran et al., 2006; Malacea et al., 2007). These ligands, in enantiomerically pure forms, have been successfully applied to some asymmetric catalytic reactions, namely palladium-catalysed allylic substitution (Routaboul et al., 2005, 2007) and iridium-catalysed ketone hydrogenation (Le Roux et al., 2007).

The reaction of the planar chiral ligand (S)-2 with one equivalent of dichloridobis(acetonitrile)palladium (see scheme) quantitatively yields the title square-planar mononuclear palladium complex, (I), as a single diastereoisomer, as shown by NMR data (1H, 31P, 13C).

Compound (I) adopts a mononuclear square-planar geometry, with the phosphine and thioether functions in relative cis positions. The largest deviation from the square plane is -0.0857 (4) for atom Cl1. This plane makes a dihedral angle of 37.08 (7)° with the plane containing the substituted Cp ring and atoms P1 and C21. As observed in the racemic compound and in related Pd complexes (Malacea et al., 2007), the S substituent is located on the opposite side (anti) of the S–C–C–C–P chelate, relative to the FeCp group. Thus, the metal [Pd?] atom has been selectively coordinated by one of the two lone pairs of the S atom; after coordination, the remaining lone pair is oriented syn to the unsubstituted Cp ring. Owing to the synthetic pathway, compound (I) is an enantiomerically pure single diastereoisomer with the configuration for planar chirality being (S), and the configuration of the S atom being (R). This stereochemistry has been unequivocally determined by the structural analysis, with a value of 0.01 (2) for the enantiopole parameter (Flack, 1983). The planar chirality of the ligand is then retained in the complex and fully controls the central chirality on the S atom.

As shown in Table 1, there are no significant differences in the relevant structural parameters between compound (I) and its racemic equivalent (II) (Table 1). Although their crystal systems are different, orthorhombic for (I) and monoclinic for (II) (Table 1), their packings are roughly similar, with four molecules within the unit cell (Figs. 2 and 3) and weak C—H···Cl interactions (Steiner, 1998) (Table 2). It may be noted that only atom Cl1 is involved in these hydrogen bonds in both compounds, which reflects the electronic trans effect of the P atom.

When comparing the structure of the title compound with related structures (Malacea et al., 2007; García Mancheño et al., 2005) (Table 1), it can indeed be noted that the Pd—S bond is longer than the Pd—P bond, and the Pd—Cl bond trans to P is longer than the Pd—Cl bond trans to S, in agreement with the stronger trans effect of phosphine donors compared with thioethers (Table 1). The Pd—P distances are within the previously established range (2.228–2.237 Å) for relevant compounds found in the Cambridge Structural Database (CSD, Version 5.28; Allen, 2002), whereas the Pd—S distances are slightly longer with respect to the reported range of 2.257–2.296 Å. In compounds (I), (II), (III) and (IV), the P—Pd—S, P—Pd—Cl and S—Pd—Cl angles (Table 1) seem to be influenced by the growing steric repulsion between the S substituent and the pseudo-axial phosphine Ph group. Indeed, the largest differences are observed for compound (IV), where the S atom bears a bulky tBu substituent. In compound (V), where the S atom is directly bonded to the Cp ring (García Mancheño et al., 2005), the square-planar framework is nearly perfect, with all angles close to 90 or 180°.

Related literature top

For related literature, see: Allen (2002); Atkinson et al. (2004); Balavoine et al. (1998); Colacot (2003); Flack (1983); García Mancheño, Gómez Arrayás & Carretero (2005); Gomez Arrayas, Adrio & Carretero (2006); Jacobsen et al. (1999); Le Roux, Malacea, Manoury, Poli, Gonsalvi & Peruzzini (2007); Malacea et al. (2007); Malacea, Daran, Duckett, Dunne, Manoury, Poli & Withwood (2006); Malacea, Manoury, Routaboul, Daran, Poli, Dunne, Withwood, Godard & Duckett (2006); Mateus et al. (2006); Noyori (1994); Ojima (2000); Riant & Kagan (1997); Richards & Locke (1998); Routaboul et al. (2005, 2007); Steiner (1998); Togni (1996).

Experimental top

Thioether (S)-2 (88 mg, 0.225 mmol) and [PdCl2(CH3CN)2] (58 mg, 0.225 mmol) were dissolved in dry dichloromethane (15 ml) under argon. After stirring for 2 h at room temperature, the solvent was evaporated and the resulting red solid was washed with dry pentane (yield 113 mg, 81%). Single crystals of complex (I) were obtained by slow evaporation of a methanol solution and used for structural studies by X-ray diffraction. Spectroscopic analysis: 1H NMR (500 MHz, CDCl3, δ, p.p.m.): 7.72–7.53 (6H, m, Ph), 751–7.41 (4H, m, Ph), 4.63 (5H, s, Cp), 4.56 (1H, s large, subst. Cp), 4.41 (1H, s large, subst. Cp), 3.78 [1H, d(AB), JHH = 12 Hz, CH2—Cp], 3.53 (1H, s large, subst. Cp), 3.29 (1H, d, JHH = 12 Hz, CH2—Cp), 3.24 (2H, q, JHH = 7 Hz, CH2—CH3), 1.38 (3H, t, JHH = 7 Hz, CH2—CH3). 31P NMR (500 MHz, CDCl3, δ, p.p.m.): 21.2. [Please clarify the meaning of the 2 in the text underneath the arrow]

Refinement top

All H atoms were fixed geometrically and treated as riding, with C—H = 0.93 (aromatic), 0.96 (methyl) or 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(Caromatic or Cmethylene) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: IPDS Software (Stoe & Cie, 2000); cell refinement: IPDS Software (Stoe & Cie, 2000); data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A molecular view of compound (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A partial packing view of compound (I), showing the C—H···Cl interactions as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) 1 - x, -1/2 + y, 1/2 - z; (ii) 2 - x, -1/2 + y, 1/2 - z; (iii) 1/2 + x, 3/2 - y, 1 - z.]
[Figure 3] Fig. 3. A partial packing view of compound (II), the related racemate of (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) x, 1 - y, -1/2 + z; (ii) x, y, -1 + z; (iii) -1/2 + x, 1/2 - y, -1/2 + z.]
Dichlorido[(S,RS)-1-diphenylphosphino-2- (ethylsulfanylmethyl)ferrocene]palladium(II) top
Crystal data top
[PdFe(C5H5)(C20H20PS)Cl2]F(000) = 1248
Mr = 621.63Dx = 1.678 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8000 reflections
a = 9.7644 (7) Åθ = 1.7–26.2°
b = 14.8595 (15) ŵ = 1.70 mm1
c = 16.9586 (12) ÅT = 180 K
V = 2460.6 (4) Å3Plate, orange
Z = 40.58 × 0.31 × 0.1 mm
Data collection top
Stoe IPDS
diffractometer
4771 independent reflections
Radiation source: fine-focus sealed tube4539 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1111
Tmin = 0.565, Tmax = 0.856k = 1818
24267 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0416P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4771 reflectionsΔρmax = 0.51 e Å3
281 parametersΔρmin = 0.53 e Å3
0 restraintsAbsolute structure: Flack (1983), with 2048 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.008 (17)
Crystal data top
[PdFe(C5H5)(C20H20PS)Cl2]V = 2460.6 (4) Å3
Mr = 621.63Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.7644 (7) ŵ = 1.70 mm1
b = 14.8595 (15) ÅT = 180 K
c = 16.9586 (12) Å0.58 × 0.31 × 0.1 mm
Data collection top
Stoe IPDS
diffractometer
4771 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4539 reflections with I > 2σ(I)
Tmin = 0.565, Tmax = 0.856Rint = 0.045
24267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.059Δρmax = 0.51 e Å3
S = 1.04Δρmin = 0.53 e Å3
4771 reflectionsAbsolute structure: Flack (1983), with 2048 Friedel pairs
281 parametersAbsolute structure parameter: 0.008 (17)
0 restraints
Special details top

Experimental. The data were collected on a Stoe Imaging Plate Diffraction System (IPDS). The crystal-to-detector distance was 70 mm. 167 frames (2 min per frame) were obtained with 0 < ϕ < 250.5° and with the crystals rotated through 1.5° in ϕ. Coverage of the unique set was over 99.3% complete to at least 25.95°. Crystal decay was monitored by measuring 200 reflections per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.76139 (2)0.738713 (13)0.355914 (11)0.02042 (6)
Fe10.43968 (5)0.62482 (3)0.22514 (2)0.02661 (10)
Cl10.75407 (9)0.86456 (4)0.44174 (4)0.03110 (15)
Cl20.94560 (9)0.79663 (6)0.28866 (4)0.03622 (18)
P10.77471 (8)0.61289 (5)0.28463 (4)0.02128 (15)
S20.56953 (8)0.69480 (5)0.42409 (4)0.02629 (16)
C10.6126 (3)0.56317 (19)0.26518 (17)0.0244 (6)
C20.5034 (3)0.5549 (2)0.32195 (18)0.0255 (6)
C30.3940 (3)0.5087 (2)0.2850 (2)0.0340 (7)
H30.31090.49410.30850.041*
C40.4319 (3)0.4884 (2)0.2062 (2)0.0345 (7)
H40.37770.45870.16940.041*
C50.5655 (3)0.5210 (2)0.19317 (18)0.0309 (7)
H50.61480.51620.14650.037*
C60.3554 (4)0.7456 (3)0.2582 (2)0.0517 (10)
H60.34340.76620.30950.062*
C70.4706 (4)0.7604 (2)0.2105 (2)0.0429 (8)
H70.54840.79250.22500.051*
C80.4486 (4)0.7185 (2)0.1370 (2)0.0397 (8)
H80.50910.71790.09460.048*
C90.3183 (4)0.6775 (3)0.1392 (2)0.0437 (8)
H90.27790.64540.09830.052*
C100.2597 (4)0.6931 (3)0.2139 (2)0.0512 (9)
H100.17460.67310.23120.061*
C210.5150 (3)0.5796 (2)0.40670 (17)0.0293 (7)
H21A0.57990.53930.43170.035*
H21B0.42680.57060.43170.035*
C1110.8553 (3)0.6158 (2)0.18850 (17)0.0262 (6)
C1120.8135 (3)0.6804 (2)0.13394 (18)0.0331 (7)
H1120.75160.72490.14880.040*
C1130.8641 (4)0.6783 (2)0.05782 (19)0.0401 (8)
H1130.83330.72000.02100.048*
C1140.9595 (4)0.6150 (2)0.0362 (2)0.0440 (9)
H1140.99430.61450.01490.053*
C1151.0032 (4)0.5527 (3)0.0902 (2)0.0430 (9)
H1151.06950.51080.07580.052*
C1160.9498 (4)0.5511 (2)0.16617 (19)0.0328 (7)
H1160.97730.50700.20170.039*
C1210.8693 (3)0.53105 (19)0.34146 (16)0.0238 (6)
C1220.8292 (3)0.4416 (2)0.3467 (2)0.0321 (7)
H1220.75200.42180.31960.038*
C1230.9038 (4)0.3819 (2)0.3922 (2)0.0407 (8)
H1230.87710.32190.39480.049*
C1241.0153 (4)0.4097 (3)0.4329 (2)0.0452 (9)
H1241.06330.36920.46430.054*
C1251.0585 (4)0.4991 (2)0.4280 (2)0.0448 (9)
H1251.13600.51810.45520.054*
C1260.9852 (4)0.5589 (2)0.3824 (2)0.0362 (8)
H1261.01360.61850.37890.043*
C2110.6203 (4)0.6833 (2)0.52697 (19)0.0385 (8)
H21C0.63220.74310.54890.046*
H21D0.54600.65480.55550.046*
C2120.7498 (4)0.6301 (3)0.54188 (19)0.0448 (8)
H21E0.74300.57250.51660.067*
H21F0.76180.62180.59760.067*
H21G0.82690.66230.52090.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02368 (11)0.01917 (10)0.01840 (10)0.00079 (8)0.00063 (8)0.00069 (7)
Fe10.0261 (2)0.0299 (2)0.0239 (2)0.00386 (18)0.00407 (17)0.00172 (17)
Cl10.0380 (4)0.0247 (3)0.0306 (3)0.0039 (4)0.0024 (3)0.0072 (3)
Cl20.0399 (4)0.0385 (4)0.0303 (4)0.0135 (3)0.0107 (3)0.0050 (3)
P10.0241 (4)0.0203 (3)0.0194 (3)0.0010 (3)0.0004 (3)0.0018 (3)
S20.0254 (4)0.0317 (4)0.0218 (3)0.0008 (3)0.0036 (3)0.0024 (3)
C10.0268 (15)0.0220 (13)0.0243 (14)0.0035 (11)0.0016 (12)0.0011 (11)
C20.0249 (15)0.0256 (15)0.0259 (15)0.0018 (12)0.0022 (12)0.0001 (12)
C30.0315 (17)0.0341 (17)0.0365 (18)0.0060 (13)0.0029 (14)0.0008 (14)
C40.0355 (18)0.0305 (16)0.0376 (17)0.0032 (14)0.0108 (15)0.0088 (14)
C50.0363 (17)0.0298 (16)0.0267 (15)0.0043 (14)0.0064 (14)0.0101 (12)
C60.065 (3)0.046 (2)0.043 (2)0.033 (2)0.0043 (18)0.0052 (17)
C70.051 (2)0.0287 (17)0.049 (2)0.0099 (16)0.0165 (17)0.0005 (15)
C80.0422 (18)0.0410 (19)0.0359 (18)0.0071 (15)0.0075 (16)0.0081 (15)
C90.0380 (18)0.053 (2)0.0402 (19)0.0085 (16)0.0152 (17)0.0045 (18)
C100.0341 (19)0.066 (2)0.054 (2)0.020 (2)0.0009 (19)0.0091 (19)
C210.0324 (17)0.0349 (18)0.0208 (15)0.0073 (13)0.0009 (12)0.0013 (13)
C1110.0251 (15)0.0278 (15)0.0258 (14)0.0054 (12)0.0011 (12)0.0020 (12)
C1120.0443 (18)0.0304 (16)0.0245 (16)0.0001 (13)0.0039 (14)0.0007 (13)
C1130.059 (2)0.0350 (18)0.0263 (16)0.0098 (16)0.0043 (16)0.0015 (14)
C1140.063 (3)0.0385 (19)0.0299 (17)0.0136 (18)0.0147 (17)0.0118 (15)
C1150.046 (2)0.045 (2)0.0387 (19)0.0033 (16)0.0148 (16)0.0206 (17)
C1160.0362 (18)0.0313 (17)0.0308 (16)0.0024 (14)0.0026 (14)0.0079 (13)
C1210.0263 (14)0.0253 (14)0.0199 (13)0.0037 (11)0.0011 (11)0.0028 (11)
C1220.0351 (17)0.0243 (15)0.0368 (17)0.0032 (12)0.0037 (15)0.0030 (14)
C1230.051 (2)0.0234 (16)0.0472 (19)0.0010 (15)0.0078 (17)0.0055 (15)
C1240.059 (2)0.0352 (19)0.0412 (19)0.0145 (17)0.0171 (18)0.0013 (16)
C1250.046 (2)0.039 (2)0.050 (2)0.0068 (17)0.0250 (18)0.0081 (16)
C1260.0382 (19)0.0265 (18)0.0439 (19)0.0001 (14)0.0089 (15)0.0050 (14)
C2110.047 (2)0.046 (2)0.0222 (15)0.0106 (17)0.0048 (15)0.0068 (14)
C2120.049 (2)0.053 (2)0.0320 (16)0.013 (2)0.0146 (17)0.0044 (14)
Geometric parameters (Å, º) top
Pd1—P12.2302 (7)C8—H80.9300
Pd1—S22.2962 (8)C9—C101.409 (5)
Pd1—Cl22.2971 (8)C9—H90.9300
Pd1—Cl12.3708 (7)C10—H100.9300
Fe1—C92.034 (3)C21—H21A0.9700
Fe1—C12.037 (3)C21—H21B0.9700
Fe1—C102.038 (4)C111—C1161.385 (4)
Fe1—C22.040 (3)C111—C1121.395 (4)
Fe1—C82.044 (3)C112—C1131.383 (4)
Fe1—C52.045 (3)C112—H1120.9300
Fe1—C32.050 (3)C113—C1141.374 (5)
Fe1—C62.052 (4)C113—H1130.9300
Fe1—C72.052 (4)C114—C1151.371 (6)
Fe1—C42.053 (3)C114—H1140.9300
P1—C11.778 (3)C115—C1161.391 (5)
P1—C1211.806 (3)C115—H1150.9300
P1—C1111.811 (3)C116—H1160.9300
S2—C211.816 (3)C121—C1221.388 (4)
S2—C2111.822 (3)C121—C1261.391 (4)
C1—C21.442 (4)C122—C1231.384 (5)
C1—C51.448 (4)C122—H1220.9300
C2—C31.416 (4)C123—C1241.354 (5)
C2—C211.488 (4)C123—H1230.9300
C3—C41.419 (5)C124—C1251.396 (6)
C3—H30.9300C124—H1240.9300
C4—C51.409 (5)C125—C1261.378 (5)
C4—H40.9300C125—H1250.9300
C5—H50.9300C126—H1260.9300
C6—C71.402 (6)C211—C2121.513 (6)
C6—C101.430 (6)C211—H21C0.9700
C6—H60.9300C211—H21D0.9700
C7—C81.411 (5)C212—H21E0.9600
C7—H70.9300C212—H21F0.9600
C8—C91.411 (5)C212—H21G0.9600
P1—Pd1—S294.72 (3)C4—C5—H5126.0
P1—Pd1—Cl289.96 (3)C1—C5—H5126.0
S2—Pd1—Cl2174.47 (3)Fe1—C5—H5126.5
P1—Pd1—Cl1174.74 (3)C7—C6—C10107.9 (3)
S2—Pd1—Cl183.71 (3)C7—C6—Fe170.0 (2)
Cl2—Pd1—Cl191.89 (3)C10—C6—Fe169.0 (2)
C9—Fe1—C1153.43 (14)C7—C6—H6126.1
C9—Fe1—C1040.47 (15)C10—C6—H6126.1
C1—Fe1—C10165.82 (14)Fe1—C6—H6126.5
C9—Fe1—C2161.75 (14)C6—C7—C8108.6 (3)
C1—Fe1—C241.42 (12)C6—C7—Fe170.0 (2)
C10—Fe1—C2126.28 (14)C8—C7—Fe169.6 (2)
C9—Fe1—C840.48 (15)C6—C7—H7125.7
C1—Fe1—C8120.96 (14)C8—C7—H7125.7
C10—Fe1—C868.25 (16)Fe1—C7—H7126.3
C2—Fe1—C8157.26 (14)C7—C8—C9107.7 (3)
C9—Fe1—C5116.75 (14)C7—C8—Fe170.2 (2)
C1—Fe1—C541.54 (11)C9—C8—Fe169.4 (2)
C10—Fe1—C5150.30 (15)C7—C8—H8126.2
C2—Fe1—C569.27 (12)C9—C8—H8126.2
C8—Fe1—C5107.09 (14)Fe1—C8—H8125.9
C9—Fe1—C3123.44 (15)C10—C9—C8108.6 (4)
C1—Fe1—C368.72 (13)C10—C9—Fe169.9 (2)
C10—Fe1—C3106.12 (16)C8—C9—Fe170.14 (19)
C2—Fe1—C340.50 (12)C10—C9—H9125.7
C8—Fe1—C3160.70 (13)C8—C9—H9125.7
C5—Fe1—C368.12 (14)Fe1—C9—H9125.8
C9—Fe1—C668.02 (16)C9—C10—C6107.3 (4)
C1—Fe1—C6129.38 (14)C9—C10—Fe169.6 (2)
C10—Fe1—C640.92 (17)C6—C10—Fe170.1 (2)
C2—Fe1—C6110.36 (14)C9—C10—H10126.4
C8—Fe1—C667.77 (16)C6—C10—H10126.4
C5—Fe1—C6166.61 (16)Fe1—C10—H10125.5
C3—Fe1—C6120.89 (16)C2—C21—S2114.3 (2)
C9—Fe1—C767.76 (15)C2—C21—H21A108.7
C1—Fe1—C7111.10 (13)S2—C21—H21A108.7
C10—Fe1—C768.06 (17)C2—C21—H21B108.7
C2—Fe1—C7123.53 (13)S2—C21—H21B108.7
C8—Fe1—C740.29 (14)H21A—C21—H21B107.6
C5—Fe1—C7128.34 (15)C116—C111—C112119.4 (3)
C3—Fe1—C7156.58 (14)C116—C111—P1121.3 (2)
C6—Fe1—C739.94 (16)C112—C111—P1119.1 (2)
C9—Fe1—C4104.24 (15)C113—C112—C111119.9 (3)
C1—Fe1—C468.84 (12)C113—C112—H112120.0
C10—Fe1—C4116.42 (16)C111—C112—H112120.0
C2—Fe1—C468.56 (13)C114—C113—C112120.5 (3)
C8—Fe1—C4123.98 (14)C114—C113—H113119.8
C5—Fe1—C440.21 (14)C112—C113—H113119.8
C3—Fe1—C440.45 (13)C115—C114—C113119.7 (3)
C6—Fe1—C4152.99 (17)C115—C114—H114120.2
C7—Fe1—C4162.85 (14)C113—C114—H114120.2
C1—P1—C121105.94 (14)C114—C115—C116120.9 (3)
C1—P1—C111103.27 (14)C114—C115—H115119.6
C121—P1—C111105.92 (14)C116—C115—H115119.6
C1—P1—Pd1113.39 (10)C111—C116—C115119.5 (3)
C121—P1—Pd1107.77 (9)C111—C116—H116120.3
C111—P1—Pd1119.58 (10)C115—C116—H116120.3
C21—S2—C21198.46 (15)C122—C121—C126118.9 (3)
C21—S2—Pd1115.15 (11)C122—C121—P1122.3 (2)
C211—S2—Pd1106.66 (12)C126—C121—P1118.8 (2)
C2—C1—C5107.0 (3)C123—C122—C121120.1 (3)
C2—C1—P1124.8 (2)C123—C122—H122120.0
C5—C1—P1128.3 (2)C121—C122—H122120.0
C2—C1—Fe169.40 (17)C124—C123—C122120.8 (3)
C5—C1—Fe169.53 (17)C124—C123—H123119.6
P1—C1—Fe1127.80 (16)C122—C123—H123119.6
C3—C2—C1107.7 (3)C123—C124—C125120.2 (3)
C3—C2—C21127.3 (3)C123—C124—H124119.9
C1—C2—C21124.6 (3)C125—C124—H124119.9
C3—C2—Fe170.14 (18)C126—C125—C124119.3 (3)
C1—C2—Fe169.18 (16)C126—C125—H125120.3
C21—C2—Fe1132.4 (2)C124—C125—H125120.3
C2—C3—C4108.9 (3)C125—C126—C121120.7 (3)
C2—C3—Fe169.36 (18)C125—C126—H126119.6
C4—C3—Fe169.88 (19)C121—C126—H126119.6
C2—C3—H3125.6C212—C211—S2115.9 (2)
C4—C3—H3125.6C212—C211—H21C108.3
Fe1—C3—H3126.8S2—C211—H21C108.3
C5—C4—C3108.4 (3)C212—C211—H21D108.3
C5—C4—Fe169.59 (19)S2—C211—H21D108.3
C3—C4—Fe169.67 (19)H21C—C211—H21D107.4
C5—C4—H4125.8C211—C212—H21E109.5
C3—C4—H4125.8C211—C212—H21F109.5
Fe1—C4—H4126.5H21E—C212—H21F109.5
C4—C5—C1108.1 (3)C211—C212—H21G109.5
C4—C5—Fe170.20 (19)H21E—C212—H21G109.5
C1—C5—Fe168.94 (17)H21F—C212—H21G109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl1i0.932.683.603 (3)174
C115—H115···Cl1ii0.932.793.704 (4)168
C125—H125···Cl1iii0.932.723.554 (4)149
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[PdFe(C5H5)(C20H20PS)Cl2]
Mr621.63
Crystal system, space groupOrthorhombic, P212121
Temperature (K)180
a, b, c (Å)9.7644 (7), 14.8595 (15), 16.9586 (12)
V3)2460.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.70
Crystal size (mm)0.58 × 0.31 × 0.1
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.565, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
24267, 4771, 4539
Rint0.045
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.059, 1.04
No. of reflections4771
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.53
Absolute structureFlack (1983), with 2048 Friedel pairs
Absolute structure parameter0.008 (17)

Computer programs: IPDS Software (Stoe & Cie, 2000), X-RED (Stoe & Cie, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Comparison of selected geometric parameters for the title compound and related CpFe[1,2-C5H3(PPh2){(CH2)nSR}]PdCl2 structures, where R = Et, Ph or t-Bu (Å, °) top
(II) n = 1, R = C2H5 (Malacea et al., 2007). (III) n = 1, R = C6H5 (Malacea et al., 2007). (IV) n = 1, R = C(CH3)3 (Malacea et al., 2007). (V) n = 0, R = C(CH3)3 (García Mancheño et al., 2005). Cg1 and Cg2 are the centroids of the Cp rings. δ is the twist angle between the two Cp rings.
Parameter(I)(II)(III)(IV)(V)
Space groupP212121CcP21/cP21/cP212121
Pd1—P12.2302 (7)2.2253 (16)2.2311 (10)2.2251 (8)2.2427 (9)
Pd1—S22.2962 (8)2.3078 (18)2.3074 (9)2.3215 (8)2.3137 (9)
Pd1—Cl22.2971 (8)2.3139 (18)2.3102 (9)2.3006 (8)2.3022 (11)
Pd1—Cl12.3708 (7)2.3621 (17)2.3683 (10)2.3588 (8)2.3461 (11)
P1—Pd1—S294.72 (3)93.93 (6)95.08 (4)96.08 (3)90.83 (3)
P1—Pd1—Cl289.96 (3)89.78 (6)90.20 (3)88.99 (3)88.26 (4)
P1—Pd1—Cl1174.74 (3)176.50 (7)175.56 (3)163.68 (3)176.95 (4)
S2—Pd1—Cl183.71 (3)83.73 (6)83.41 (3)86.73 (3)89.39 (4)
S2—Pd1—Cl2174.47 (3)176.28 (6)173.14 (3)169.98 (3)176.23 (4)
Cl1—Pd1—Cl291.89 (3)92.55 (7)91.65 (4)90.82 (3)91.72 (5)
Fe1—Cg11.6463 (4)1.643 (7)1.6523 (6)1.6581 (4)
Fe1—Cg21.6539 (4)1.662 (6)1.6651 (6)1.6657 (4)
Cg1—Fe1—Cg2176.03 (7)174.8 (11)175.67 (3)176.96 (3)
δ8.4 (3)5.6 (5)6.8 (3)11.8 (2)
Comparison of C—H···Cl hydrogen-bond interactions between compound (I) and its racemate, (II) (Å, °) top
D—HH···AD···AD—H···ASymmetry code
Compound (I)C4—H4···Cl10.932.683.603 (3)174.01-x, -1/2+y, 1/2-z
C115—H115···Cl10.932.793.704 (4)168.22-x, -1/2+y, 1/2-z
C125—H125···Cl10.932.723.554 (4)149.01/2+x, 3/2-y, 1-z
Compound (II)C113—H113···Cl10.952.783.474 (8)131.0x, 1-y, 1/2-z
C114—H114···Cl10.952.823.499 (7)129.2x, y, -1+z
C123—H123···Cl10.952.693.560 (9)152.2-1/2+x, 1/2-y, -1/2+z
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds