Download citation
Download citation
link to html
A second polymorphic form (form II) of the previously reported 1,4,7-tris­(p-tolyl­sulfon­yl)-1,4,7-triaza­cyclo­nonane (form I), C27H33N3O6S3, is presented. The mol­ecular structures of the two forms display very different conformations, thus prompting the two forms to crystallize in two different space groups and exhibit quite diverse crystal structure assemblies. Form I crystallizes in the triclinic space group P\overline{1}, while form II crystallizes in the monoclinic space group P21/n. The main differences between the two mol­ecular structures are the conformations of the p-tosyl groups relative to each other and to the macrocyclic ring. The resulting crystal packing displays no classical hydrogen bonds, but different supra­molecular synthons give rise to different packing motifs.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010703805X/hj3048sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010703805X/hj3048Isup2.hkl
Contains datablock I

CCDC reference: 665508

Comment top

1,4,7-triazacyclononane (TACN) base ligands are used in the syntheses of high- and low-valent organometallic complexes (e.g. Male et al., 2000; Bambirra et al., 2001; Gott et al., 2002; Cui et al., 2003) and also in the preparation of models for metalloprotein active sites. The p-toluenesulfonyl (tosyl) groups may be used to differentiate the three nitrogen atom, as selectively tosylated TACN rings are accessible via the partial hydrolysis of 1,4,7-tris(p-toluenesulfonyl)-1,4,7-triazacyclononane (TACN-3 T s) or by statistical tosylation of parent macrocycle (Halfen & Tolman, 1998). The utility of this compound, when used as starting fragment, is the selective detosylation and introduction of different functional groups in any or all of the N atoms, thus generating a wide range of multidentate ligands (Wainwright, 1997).

The molecular structure of this new polymorph (Fig. 1) displays a completely different overall conformation from the already known structure of TACN-3 T s [Cambridge Structural Database (Allen, 2002) refcode IMIPAV (Gott & McGowan, 2003)]. The structure of the central macrocycle is a puckered ring, well expressed by the torsion angles within the ring and the distance from each N atom to the mean plane of the nine-membered ring (atom N1 0.326 and atom N7 0.650 Å away on the same side of the mean plane and atom N4 0.538 Å away, on the other side of the plane).

The different conformations of both polymorphs are clearly seen in Figures 2 and 3, where we compare the molecular structures of both conformers and show the different positioning of the p-tosylates relatively to the mean plane of the macrocycle (see also Table 1). Figure 2 displays an overlay of the two polymorphs, showing that the central nine-membered rings are very similar but that the conformations of the p-tosyl groups are quite different. In form I, one tosyl ring is nearly coplanar with the mean square plane of the nine-membered ring (making an angle of 6.54°) with the other two rings making angles of 38.44° and 62.63° respectively, while in our structure, the three rings are arranged in a completely different orientation with angles of 55.66 (17), 49.22 (14) and 63.77 (17)°, respectively (see Table 1). The largest difference is clearly in the relative configuration of the parallel ring (the tosyl group with atom S7) in form I.

Form I and Form II crystallize in two completely different space groups, one is triclinic Psc/Desktop/publCIF/symbols/bar1.png" height="12" />sc/Desktop/publCIF/symbols/whitespace.png" height="12" />and the other is the monoclinic P21/n. As well as the differences in conformation, the two different crystal forms PCK with quite different supramolecular arrangements. No classical hydrogen bond based synthons are found in any of the structures, but in both forms there are weak intermolecular C—H···O and C—H···π interactions that explain the supramolecular arrangement found.

In the view along c, the crystal packing of form I shows a layer of alternated "pseudo-dimers" of p-tosyl rings (connected to S4) that spread along b, connected by C—H···O [C47—H47B ··· O12 = 3.282 (2) Å, 2.440 Å, 144.14°; symmetry code: (i) −1 + x, y, z and C17—H17B ··· O11 = 3.406 (1) Å, 2.510 Å, 152.73°; symmetry code: (ii) 1 − x, 1 − y, −z] (see Figure 4a). There are also some weak C—H···O [C75—H75 ··· O12 = 3.544 (1) Å, 2.631 Å, 160.64°; symmetry code: (iii) 1 − x, −y, 1 − z] and C—H···π [C77—H77B ··· Cg2 = 3.8129 (2) Å, 2.880 Å, 160°; symmetry code: (iv) 1 − x, −y, 1 − z;Cg2 is the centroid of the p-tosyl ring connected to atom S4] interactions with molecules above and below the ab plane. Numbering scheme for form II was adapted, for consistency, with Form I presented by Gott & MacGowan, 2003.

Figure 4(b), where the packing is shown along a, reveals along that same direction, a repetition unit formed by two pairs of p-tosylate rings (the ones connected to atoms S4 and S7, with centroids Cg2 and Cg3, respectively) antiparallel to each other that interact between themselves via C—H···π interactions [C44—H44 ··· Cg(3) = 3.620 (5) Å, 2.880 Å, 137°; symmetry code: (i) −x, 1 − y, −z; and C75—H75 ··· Cg(2) = 3.648 (5) Å, 2.890 Å, 140°; symmetry code: (ii) 1 − x, 1 − y, −z]. These two antiparallel pairs do not interact between them and the motif is terminated by a different p-tosyl ring (connected to atom S1) on each end. These units repeat themselves along the [0 − 1 −1] direction and the tosyl group ending this sequence belongs to the chain describe next (along b). It can be seen that the p-tosyl ring connected to atom S1 forms a chain along the [010] direction, the tosyl groups interacting via a C—H ··· O contact [C15—H15 ··· O11 = 3.278 (5) Å, 2.579 Å, 132.36°; symmetry code: (iii) 1/2 + x, 3/2 − y, 1/2 + z]. This arrangement is reinforced by C—H ··· O interactions [C17—H17 ··· O71 = 3.298 (5) Å, 2.480 Å, 143.27°; symmetry codes: (iv) 1/2 − x, 1/2 + y, 1/2 − z and (v)1/2 − x,-1/2 + y, 1/2 − z] above and below the chain (see Figure 4b).

Even though there are no classical intermolecular hydrogen bonds, it can be seen that the packing is influenced by an energetic interplay between longer contacts as well as close packing considerations such as Kitaigorodskii-Aufbau principle (Kitaigorodskii, 1961) and the achievement of a maximum packing efficiency (Fagan et al., 1989; Braga & Grepioni, 1996). This is confirmed by comparison of the similar packing efficiencies obtained in both polymorphic forms (68.6 and 68.0% in forms I and II, respectively).

Experimental top

TACN-3 T s was synthesized according to a previously published procedure (Searle & Geue, 1984). All the other starting materials were obtained from Sigma–Aldrich and were used as received. Attempted cocrystallization of paracetamol using TACN-3 T s as a co-former led to the serendipitous discovery of a novel polymorphic form of the latter. Paracetamol (0.1170 g, 0.774 mmol) and TACN-3 T s (0.0893 g, 0.1509 mmol) were dissolved in ethanol (4 ml) and chloroform (1 ml), heated at 353 K for 15 min and allowed to cool. Colourless crystals of form II were formed after two days on maintaining the solution at room temperature.

Refinement top

H atoms were placed in calculated positions and allowed to ride on their parent C atoms, with C—H distances of 0.93 Å for aromatic H atoms, 0.97 Å for methylene H atoms and 0.96 Å for methyl H atoms. The disorder on the p-methyl group (C77) was modelled using AFIX127; the occupancies of the two components refined to about 70 and 30%.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (reference?) and Mercury (Macrae et al., 2006); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the new TACN-3 T s polymorph, form II. Displacement ellipsoids are drawn at the 50% probability level. Only the H atoms of the major component (~70%) of the disordered C77 p-methyl group are shown.
[Figure 2] Fig. 2. Overlap of the two polymorphs of TACN-3 T s; form I is shown in a darker colour.
[Figure 3] Fig. 3. TACN-3 T s structures, with the mean plane of the macrocycle represented by the near vertical lines through the structures: (a) form I; (b) form II. In both cases, ring 1 corresponds to the phenyl ring connected to atom S7, ring 2 corresponds to the phenyl ring connected to atom S1, and ring 3 corresponds to the phenyl ring connected to atom S7.
[Figure 4] Fig. 4. The packing of the TACN-3 T s structures. (a) Form I, viewed down c. (b) Form II, viewed down a.
1,4,7-tris(p-tolylsulfonyl)-1,4,7-triazacyclononane top
Crystal data top
C27H33N3O6S3F(000) = 1248
Mr = 591.74Dx = 1.399 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 5.877 (4) ÅCell parameters from 28113 reflections
b = 14.939 (3) Åθ = 2.7–25.4°
c = 32.128 (5) ŵ = 0.31 mm1
β = 95.04 (2)°T = 150 K
V = 2810 (2) Å3Block, colourless
Z = 40.14 × 0.08 × 0.03 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3112 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.124
Graphite monochromatorθmax = 25.4°, θmin = 2.7°
ϕ and ω scansh = 77
27803 measured reflectionsk = 1717
5053 independent reflectionsl = 3838
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0561P)2]
where P = (Fo2 + 2Fc2)/3
5053 reflections(Δ/σ)max < 0.001
356 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C27H33N3O6S3V = 2810 (2) Å3
Mr = 591.74Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.877 (4) ŵ = 0.31 mm1
b = 14.939 (3) ÅT = 150 K
c = 32.128 (5) Å0.14 × 0.08 × 0.03 mm
β = 95.04 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3112 reflections with I > 2σ(I)
27803 measured reflectionsRint = 0.124
5053 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.01Δρmax = 0.86 e Å3
5053 reflectionsΔρmin = 0.36 e Å3
356 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.18441 (16)0.69063 (7)0.19308 (3)0.0252 (3)
S40.42281 (16)0.75316 (8)0.02427 (3)0.0268 (3)
S70.11331 (17)0.43388 (7)0.10663 (3)0.0267 (3)
O110.2677 (5)0.61058 (19)0.21379 (8)0.0328 (7)
O120.0530 (4)0.7123 (2)0.19097 (8)0.0330 (7)
O410.5626 (5)0.6964 (2)0.00119 (8)0.0355 (7)
O420.5323 (5)0.8122 (2)0.05455 (8)0.0349 (7)
O710.0128 (4)0.4594 (2)0.14100 (8)0.0355 (8)
O720.0093 (5)0.4129 (2)0.06718 (8)0.0357 (8)
N10.2513 (5)0.6824 (2)0.14479 (9)0.0232 (8)
N40.2531 (5)0.6884 (2)0.04727 (9)0.0233 (8)
N70.2867 (5)0.5140 (2)0.09707 (9)0.0243 (8)
C20.1808 (7)0.7584 (3)0.11742 (11)0.0298 (10)
H2A0.31100.79750.11520.036*
H2B0.06440.79250.13010.036*
C30.0880 (7)0.7295 (3)0.07398 (11)0.0293 (10)
H3A0.03440.68690.07680.035*
H3B0.02130.78140.05950.035*
C50.2111 (7)0.5978 (3)0.03048 (11)0.0261 (10)
H5A0.24410.59690.00140.031*
H5B0.05060.58350.03140.031*
C60.3512 (7)0.5273 (3)0.05372 (11)0.0263 (10)
H6A0.33260.47110.03860.032*
H6B0.51110.54390.05480.032*
C80.4504 (6)0.5399 (3)0.13233 (11)0.0262 (10)
H8A0.59920.51540.12790.031*
H8B0.40240.51380.15780.031*
C90.4713 (6)0.6399 (3)0.13788 (12)0.0253 (9)
H9A0.58070.65260.16150.030*
H9B0.52930.66570.11320.030*
C110.3344 (6)0.7812 (3)0.21634 (11)0.0239 (9)
C120.5492 (7)0.7665 (3)0.23746 (12)0.0309 (11)
H120.60870.70890.24010.037*
C130.2447 (7)0.8660 (3)0.21364 (12)0.0310 (10)
H130.10040.87570.20010.037*
C140.6709 (7)0.8380 (3)0.25417 (12)0.0356 (12)
H140.81480.82850.26790.043*
C150.3705 (7)0.9371 (3)0.23124 (12)0.0333 (11)
H150.30970.99460.22970.040*
C160.5858 (7)0.9230 (3)0.25110 (11)0.0324 (11)
C170.7251 (8)1.0006 (4)0.26930 (13)0.0466 (13)
H17A0.87650.99750.26030.070*
H17B0.73310.99790.29920.070*
H17C0.65431.05580.25990.070*
C410.2509 (7)0.8212 (3)0.01086 (12)0.0282 (10)
C420.0406 (7)0.7935 (3)0.02786 (12)0.0307 (10)
H420.01430.73720.02150.037*
C430.3344 (8)0.9045 (3)0.02068 (13)0.0365 (11)
H430.47720.92330.00920.044*
C440.0905 (7)0.8505 (3)0.05482 (12)0.0348 (11)
H440.23380.83190.06620.042*
C450.2022 (8)0.9594 (3)0.04775 (14)0.0444 (12)
H450.25861.01510.05460.053*
C460.0112 (8)0.9334 (3)0.06481 (13)0.0371 (11)
C470.1575 (9)0.9950 (4)0.09322 (15)0.0530 (14)
H47A0.24121.03460.07670.080*
H47B0.26260.96010.11110.080*
H47C0.06181.02940.10990.080*
C710.2854 (6)0.3424 (3)0.12384 (11)0.0249 (10)
C720.2278 (7)0.2921 (3)0.15768 (13)0.0348 (11)
H720.10060.30720.17150.042*
C730.4771 (7)0.3198 (3)0.10395 (12)0.0297 (10)
H730.51580.35310.08120.036*
C740.3609 (8)0.2197 (3)0.17061 (13)0.0399 (12)
H740.32090.18560.19300.048*
C750.6101 (7)0.2483 (3)0.11771 (12)0.0350 (11)
H750.74030.23460.10450.042*
C760.5541 (7)0.1966 (3)0.15081 (12)0.0350 (11)
C770.7017 (9)0.1172 (4)0.16522 (15)0.0516 (14)
H77A0.60860.07250.17690.077*0.69 (5)
H77B0.81850.13640.18610.077*0.69 (5)
H77C0.77110.09240.14180.077*0.69 (5)
H77D0.85690.12840.15960.077*0.31 (5)
H77E0.64700.06440.15050.077*0.31 (5)
H77F0.69440.10840.19470.077*0.31 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0258 (5)0.0252 (7)0.0248 (5)0.0017 (5)0.0031 (4)0.0039 (5)
S40.0263 (5)0.0253 (7)0.0285 (5)0.0030 (5)0.0007 (4)0.0024 (5)
S70.0252 (5)0.0267 (7)0.0278 (5)0.0014 (5)0.0001 (4)0.0017 (5)
O110.0445 (17)0.0235 (19)0.0304 (15)0.0004 (14)0.0024 (13)0.0037 (13)
O120.0213 (14)0.035 (2)0.0431 (17)0.0043 (13)0.0057 (12)0.0077 (14)
O410.0348 (16)0.035 (2)0.0381 (16)0.0024 (15)0.0096 (13)0.0029 (14)
O420.0330 (16)0.035 (2)0.0352 (16)0.0080 (15)0.0070 (13)0.0010 (14)
O710.0294 (15)0.043 (2)0.0357 (16)0.0054 (15)0.0136 (13)0.0010 (14)
O720.0347 (16)0.035 (2)0.0356 (16)0.0070 (14)0.0096 (13)0.0010 (14)
N10.0261 (17)0.018 (2)0.0252 (17)0.0038 (15)0.0024 (14)0.0021 (15)
N40.0282 (18)0.020 (2)0.0217 (16)0.0001 (16)0.0017 (14)0.0006 (15)
N70.0268 (17)0.023 (2)0.0226 (17)0.0019 (15)0.0007 (14)0.0022 (15)
C20.041 (2)0.022 (3)0.026 (2)0.007 (2)0.0035 (18)0.0001 (19)
C30.027 (2)0.035 (3)0.025 (2)0.006 (2)0.0005 (17)0.0039 (19)
C50.030 (2)0.026 (3)0.021 (2)0.0087 (19)0.0002 (17)0.0035 (18)
C60.029 (2)0.022 (3)0.028 (2)0.0057 (19)0.0032 (17)0.0061 (18)
C80.024 (2)0.028 (3)0.025 (2)0.0055 (19)0.0046 (17)0.0084 (19)
C90.022 (2)0.026 (3)0.026 (2)0.0007 (19)0.0042 (16)0.0069 (18)
C110.029 (2)0.025 (3)0.0188 (19)0.0007 (19)0.0051 (17)0.0033 (17)
C120.025 (2)0.039 (3)0.029 (2)0.003 (2)0.0028 (17)0.005 (2)
C130.029 (2)0.029 (3)0.034 (2)0.001 (2)0.0008 (18)0.009 (2)
C140.025 (2)0.054 (4)0.028 (2)0.000 (2)0.0012 (18)0.011 (2)
C150.037 (2)0.029 (3)0.035 (2)0.002 (2)0.007 (2)0.012 (2)
C160.033 (2)0.044 (3)0.020 (2)0.007 (2)0.0040 (18)0.010 (2)
C170.047 (3)0.058 (4)0.035 (2)0.018 (3)0.006 (2)0.015 (2)
C410.031 (2)0.026 (3)0.027 (2)0.003 (2)0.0000 (18)0.0034 (19)
C420.032 (2)0.024 (3)0.035 (2)0.005 (2)0.0010 (19)0.001 (2)
C430.040 (3)0.027 (3)0.041 (3)0.006 (2)0.008 (2)0.003 (2)
C440.037 (2)0.032 (3)0.034 (2)0.002 (2)0.002 (2)0.001 (2)
C450.055 (3)0.021 (3)0.055 (3)0.006 (2)0.008 (2)0.010 (2)
C460.045 (3)0.027 (3)0.038 (3)0.003 (2)0.003 (2)0.006 (2)
C470.062 (3)0.033 (3)0.063 (3)0.010 (3)0.003 (3)0.015 (3)
C710.028 (2)0.023 (3)0.022 (2)0.0059 (19)0.0018 (17)0.0040 (18)
C720.035 (2)0.035 (3)0.036 (2)0.003 (2)0.012 (2)0.003 (2)
C730.032 (2)0.029 (3)0.028 (2)0.004 (2)0.0052 (18)0.000 (2)
C740.049 (3)0.040 (3)0.031 (2)0.005 (2)0.011 (2)0.007 (2)
C750.036 (2)0.038 (3)0.032 (2)0.008 (2)0.0044 (19)0.006 (2)
C760.045 (3)0.027 (3)0.032 (2)0.004 (2)0.006 (2)0.002 (2)
C770.060 (3)0.046 (4)0.048 (3)0.011 (3)0.001 (2)0.014 (3)
Geometric parameters (Å, º) top
S1—O121.428 (3)C14—C161.365 (6)
S1—O111.434 (3)C14—H140.9300
S1—N11.638 (3)C15—C161.383 (6)
S1—C111.746 (4)C15—H150.9300
S4—O421.424 (3)C16—C171.507 (6)
S4—O411.432 (3)C17—H17A0.9600
S4—N41.615 (3)C17—H17B0.9600
S4—C411.768 (4)C17—H17C0.9600
S7—O711.434 (3)C41—C421.371 (5)
S7—O721.437 (3)C41—C431.384 (6)
S7—N71.619 (3)C42—C441.397 (6)
S7—C711.761 (4)C42—H420.9300
N1—C21.474 (5)C43—C451.383 (6)
N1—C91.475 (5)C43—H430.9300
N4—C51.470 (5)C44—C461.372 (6)
N4—C31.483 (5)C44—H440.9300
N7—C81.472 (4)C45—C461.380 (6)
N7—C61.488 (4)C45—H450.9300
C2—C31.516 (5)C46—C471.510 (6)
C2—H2A0.9700C47—H47A0.9600
C2—H2B0.9700C47—H47B0.9600
C3—H3A0.9700C47—H47C0.9600
C3—H3B0.9700C71—C731.385 (5)
C5—C61.496 (5)C71—C721.387 (6)
C5—H5A0.9700C72—C741.377 (6)
C5—H5B0.9700C72—H720.9300
C6—H6A0.9700C73—C751.373 (6)
C6—H6B0.9700C73—H730.9300
C8—C91.509 (6)C74—C761.393 (6)
C8—H8A0.9700C74—H740.9300
C8—H8B0.9700C75—C761.378 (6)
C9—H9A0.9700C75—H750.9300
C9—H9B0.9700C76—C771.518 (6)
C11—C131.373 (6)C77—H77A0.9600
C11—C121.397 (5)C77—H77B0.9600
C12—C141.369 (6)C77—H77C0.9600
C12—H120.9300C77—H77D0.9600
C13—C151.386 (6)C77—H77E0.9600
C13—H130.9300C77—H77F0.9600
O12—S1—O11120.26 (18)C16—C15—C13120.3 (4)
O12—S1—N1106.66 (16)C16—C15—H15119.8
O11—S1—N1106.03 (17)C13—C15—H15119.8
O12—S1—C11107.39 (19)C14—C16—C15119.4 (4)
O11—S1—C11107.96 (18)C14—C16—C17120.3 (4)
N1—S1—C11108.02 (18)C15—C16—C17120.3 (4)
O42—S4—O41118.35 (18)C16—C17—H17A109.5
O42—S4—N4108.57 (17)C16—C17—H17B109.5
O41—S4—N4106.74 (18)H17A—C17—H17B109.5
O42—S4—C41106.19 (19)C16—C17—H17C109.5
O41—S4—C41109.35 (18)H17A—C17—H17C109.5
N4—S4—C41107.17 (18)H17B—C17—H17C109.5
O71—S7—O72118.94 (17)C42—C41—C43120.4 (4)
O71—S7—N7109.03 (18)C42—C41—S4121.7 (3)
O72—S7—N7105.62 (17)C43—C41—S4117.9 (3)
O71—S7—C71106.64 (18)C41—C42—C44119.5 (4)
O72—S7—C71109.72 (18)C41—C42—H42120.2
N7—S7—C71106.26 (18)C44—C42—H42120.2
C2—N1—C9116.5 (3)C45—C43—C41119.1 (4)
C2—N1—S1115.4 (3)C45—C43—H43120.5
C9—N1—S1117.5 (2)C41—C43—H43120.5
C5—N4—C3119.7 (3)C46—C44—C42121.0 (4)
C5—N4—S4118.3 (2)C46—C44—H44119.5
C3—N4—S4118.6 (3)C42—C44—H44119.5
C8—N7—C6118.9 (3)C46—C45—C43121.6 (4)
C8—N7—S7115.3 (3)C46—C45—H45119.2
C6—N7—S7119.5 (3)C43—C45—H45119.2
N1—C2—C3112.9 (3)C44—C46—C45118.5 (4)
N1—C2—H2A109.0C44—C46—C47120.3 (4)
C3—C2—H2A109.0C45—C46—C47121.2 (4)
N1—C2—H2B109.0C46—C47—H47A109.5
C3—C2—H2B109.0C46—C47—H47B109.5
H2A—C2—H2B107.8H47A—C47—H47B109.5
N4—C3—C2116.7 (3)C46—C47—H47C109.5
N4—C3—H3A108.1H47A—C47—H47C109.5
C2—C3—H3A108.1H47B—C47—H47C109.5
N4—C3—H3B108.1C73—C71—C72119.6 (4)
C2—C3—H3B108.1C73—C71—S7120.8 (3)
H3A—C3—H3B107.3C72—C71—S7119.5 (3)
N4—C5—C6113.5 (3)C74—C72—C71119.3 (4)
N4—C5—H5A108.9C74—C72—H72120.3
C6—C5—H5A108.9C71—C72—H72120.3
N4—C5—H5B108.9C75—C73—C71120.3 (4)
C6—C5—H5B108.9C75—C73—H73119.9
H5A—C5—H5B107.7C71—C73—H73119.9
N7—C6—C5112.7 (3)C72—C74—C76121.4 (4)
N7—C6—H6A109.0C72—C74—H74119.3
C5—C6—H6A109.0C76—C74—H74119.3
N7—C6—H6B109.0C73—C75—C76121.1 (4)
C5—C6—H6B109.0C73—C75—H75119.4
H6A—C6—H6B107.8C76—C75—H75119.4
N7—C8—C9113.1 (3)C75—C76—C74118.2 (4)
N7—C8—H8A109.0C75—C76—C77120.3 (4)
C9—C8—H8A109.0C74—C76—C77121.4 (4)
N7—C8—H8B109.0C76—C77—H77A109.5
C9—C8—H8B109.0C76—C77—H77B109.5
H8A—C8—H8B107.8H77A—C77—H77B109.5
N1—C9—C8112.4 (3)C76—C77—H77C109.5
N1—C9—H9A109.1H77A—C77—H77C109.5
C8—C9—H9A109.1H77B—C77—H77C109.5
N1—C9—H9B109.1C76—C77—H77D109.5
C8—C9—H9B109.1H77A—C77—H77D141.1
H9A—C9—H9B107.9H77B—C77—H77D56.3
C13—C11—C12120.1 (4)H77C—C77—H77D56.3
C13—C11—S1120.7 (3)C76—C77—H77E109.5
C12—C11—S1119.1 (3)H77A—C77—H77E56.3
C14—C12—C11119.1 (4)H77B—C77—H77E141.1
C14—C12—H12120.4H77C—C77—H77E56.3
C11—C12—H12120.4H77D—C77—H77E109.5
C11—C13—C15119.6 (4)C76—C77—H77F109.5
C11—C13—H13120.2H77A—C77—H77F56.3
C15—C13—H13120.2H77B—C77—H77F56.3
C16—C14—C12121.5 (4)H77C—C77—H77F141.1
C16—C14—H14119.3H77D—C77—H77F109.5
C12—C14—H14119.3H77E—C77—H77F109.5
O12—S1—N1—C250.6 (3)C12—C11—C13—C151.3 (6)
O11—S1—N1—C2179.9 (3)S1—C11—C13—C15178.0 (3)
C11—S1—N1—C264.5 (3)C11—C12—C14—C160.9 (6)
O12—S1—N1—C9165.9 (3)C11—C13—C15—C160.5 (6)
O11—S1—N1—C936.6 (3)C12—C14—C16—C151.0 (6)
C11—S1—N1—C978.9 (3)C12—C14—C16—C17179.2 (4)
O42—S4—N4—C5149.8 (3)C13—C15—C16—C141.7 (6)
O41—S4—N4—C521.1 (3)C13—C15—C16—C17178.5 (4)
C41—S4—N4—C595.9 (3)O42—S4—C41—C42142.7 (3)
O42—S4—N4—C350.9 (3)O41—S4—C41—C4288.5 (4)
O41—S4—N4—C3179.5 (2)N4—S4—C41—C4226.8 (4)
C41—S4—N4—C363.4 (3)O42—S4—C41—C4336.8 (4)
O71—S7—N7—C857.9 (3)O41—S4—C41—C4391.9 (4)
O72—S7—N7—C8173.2 (3)N4—S4—C41—C43152.7 (3)
C71—S7—N7—C856.7 (3)C43—C41—C42—C440.8 (6)
O71—S7—N7—C6150.4 (3)S4—C41—C42—C44178.7 (3)
O72—S7—N7—C621.5 (3)C42—C41—C43—C450.2 (7)
C71—S7—N7—C695.0 (3)S4—C41—C43—C45179.3 (3)
C9—N1—C2—C377.0 (4)C41—C42—C44—C460.5 (6)
S1—N1—C2—C3139.2 (3)C41—C43—C45—C460.7 (7)
C5—N4—C3—C2122.2 (4)C42—C44—C46—C450.3 (7)
S4—N4—C3—C278.8 (4)C42—C44—C46—C47178.6 (4)
N1—C2—C3—N467.7 (5)C43—C45—C46—C440.9 (7)
C3—N4—C5—C6101.9 (4)C43—C45—C46—C47178.0 (4)
S4—N4—C5—C699.0 (3)O71—S7—C71—C73159.3 (3)
C8—N7—C6—C5112.3 (4)O72—S7—C71—C7370.7 (4)
S7—N7—C6—C597.0 (4)N7—S7—C71—C7343.1 (4)
N4—C5—C6—N767.3 (4)O71—S7—C71—C7220.9 (4)
C6—N7—C8—C973.1 (4)O72—S7—C71—C72109.2 (3)
S7—N7—C8—C9135.1 (3)N7—S7—C71—C72137.1 (3)
C2—N1—C9—C8127.8 (3)C73—C71—C72—C740.9 (6)
S1—N1—C9—C889.1 (3)S7—C71—C72—C74179.0 (3)
N7—C8—C9—N158.6 (4)C72—C71—C73—C750.3 (6)
O12—S1—C11—C1326.5 (4)S7—C71—C73—C75179.9 (3)
O11—S1—C11—C13157.6 (3)C71—C72—C74—C760.9 (7)
N1—S1—C11—C1388.2 (3)C71—C73—C75—C761.4 (6)
O12—S1—C11—C12154.2 (3)C73—C75—C76—C741.3 (6)
O11—S1—C11—C1223.2 (4)C73—C75—C76—C77179.2 (4)
N1—S1—C11—C1291.1 (3)C72—C74—C76—C750.1 (7)
C13—C11—C12—C142.0 (6)C72—C74—C76—C77179.6 (4)
S1—C11—C12—C14177.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O11i0.982.513.406 (1)153
C47—H47B···O12ii0.982.443.282 (2)144
C75—H75···O12iii0.952.633.544 (1)161
C77—H77B···Cg2iii0.982.883.813 (2)160
C15—H15···O11iv0.932.583.278 (5)132
C17—H17B···O71iv0.962.483.298 (5)143
C44—H44···Cg3v0.932.883.620 (5)137
C75—H75···Cg2ii0.932.893.648 (5)140
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC27H33N3O6S3
Mr591.74
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)5.877 (4), 14.939 (3), 32.128 (5)
β (°) 95.04 (2)
V3)2810 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.14 × 0.08 × 0.03
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
27803, 5053, 3112
Rint0.124
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.141, 1.01
No. of reflections5053
No. of parameters356
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.36

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP (reference?) and Mercury (Macrae et al., 2006), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O11i0.982.513.406 (1)153
C47—H47B···O12ii0.982.443.282 (2)144
C75—H75···O12iii0.952.633.544 (1)161
C77—H77B···Cg2iii0.982.883.813 (2)160
C15—H15···O11iv0.932.583.278 (5)132
C17—H17B···O71iv0.962.483.298 (5)143
C44—H44···Cg3v0.932.883.620 (5)137
C75—H75···Cg2ii0.932.893.648 (5)140
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+1, z.
Comparative geometrical parameters (°) for both polymorphs top
Torsion angles and angles between planesForm IaForm IIb
C2-N1-S1-C1183,08-64,51 (30)
C3-N4-S4-C4166,05-63,38 (32)
C5-N4-S4-C41-73,7295,91 (30)
C6-N7-S7-C7176,5294,98 (30)
C8-N7-S7-C71-73,59-56,69 (30)
C9-N1-S1-C1172,5678,98 (30)
N1-C2-C3-N473,35-67,63 (43)
N4-C5-C6-N7-62,4167,28 (41)
N7-C8-C9-N1-62,558,56 (42)
Mean planec - Ring 1d plane6,5455,66 (17)
Mean planec - Ring 2e plane38,4449,22 (14)
Mean planec - Ring 3f plane62,6363,77 (17)
Ring 1d plane - Ring 2e plane40,0577,73 (19)
Ring 1d plane - Ring 3f plane57,7561,52 (20)
Ring 2e plane - Ring 3f plane31,0031,10 (19)
Mean planec - Mean N planeg24,2023,44 (18)
Notes: (a) IMIPAV; (b) polymorph presented in this work; (c) Mean plane of the nine-membered ring; (d) Ring 1 is connected to S7; (e) Ring 2 is connected to S1; (f) Ring 3 is connected to S4; (g) Mean plane through the three N in the nine-membered ring.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds